Processing math: 100%
Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Toán 10 Kết nối tri thức

CHƯƠNG III. HỆ THỨC LƯỢNG TRONG TAM GIÁC

Giải bài tập 3.1; 3.2; 3.3; 3.4 trang 37 sách giáo khoa Toán lớp 10 Kết nối tri thức với cuộc sống tập 1 - Bài 5: Giá trị lượng giác của một góc từ 0 đến 180

Bài 3.1 trang 37 SGK Toán lớp 10 tập 1 - Kết Nối Tri Thức:

Không dùng bảng số hay máy tính cầm tay, tính giá trị của các biểu thức sau:

a) (2sin30o+cos135o3tan150o).(cos180ocot60o)

b) sin290o+cos2120o+cos20otan260+cot2135o

c) cos60o.sin30o+cos230o

Phương pháp:

a) Bước 1: Đưa GTLG của các góc 135o,150o,180o về GTLG của các góc 45o,30o,0o

cos135o=cos45o;cos180o=cos0otan150o=tan30o

Bước 2: Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.

sin30o=12;tan30o=33cos45o=22;cos0o=1;cot60o=33

b) Bước 1: Đưa GTLG của các góc 120o,135o về GTLG của các góc 60o,45o

cos120o=cos60o,cot135o=cot45o

Bước 2: Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.

cos0o=1;cot45o=1;cos60o=12tan60o=3;sin90o=1

c) Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.

sin30o=12;cos30o=32;cos60o=12

Lời giải:

a) Đặt  A=(2sin30o+cos135o3tan150o).(cos180ocot60o)

Ta có: {cos135o=cos45o;cos180o=cos0otan150o=tan30o

A=(2sin30ocos45o+3tan30o).(cos0ocot60o)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

{sin30o=12;tan30o=33cos45o=22;cos0o=1;cot60o=33

A=(2.1222+3.33).(133)

A=(122+3).(1+33)A=22+232.3+33A=(22+23)(3+3)6A=6+23326+63+66A=12+833266.

b) Đặt  B=sin290o+cos2120o+cos20otan260+cot2135o

Ta có: {cos120o=cos60ocot135o=cot45o{cos2120o=cos260ocot2135o=cot245o

B=sin290o+cos260o+cos20otan260+cot245o

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

{cos0o=1;cot45o=1;cos60o=12tan60o=3;sin90o=1

B=12+(12)2+12(3)2+12

B=1+14+13+1=14.

Bài 3.2 trang 37 SGK Toán lớp 10 tập 1 - Kết Nối Tri Thức:

Đơn giản các biểu thức sau:

a) sin100o+sin80o+cos16o+cos164o;

b) 2sin(180oα).cotαcos(180oα).tanα.cot(180oα) với 0o<α<90o.

Phương pháp:

Lời giải:

b) Ta có:{sin(180oα)=sinαcos(180oα)=cosαtan(180oα)=tanαcot(180oα)=cotα(0o<α<90o)2sin(180oα).cotαcos(180oα).tanα.cot(180oα) =2sinα.cotα(cosα).tanα.(cotα)=2sinα.cotαcosα.tanα.cotα

=2sinα.cosαsinαcosα.(tanα.cotα)=2cosαcosα.1=cosα.

Bài 3.3 trang 37 SGK Toán lớp 10 tập 1 - Kết Nối Tri Thức:

Chứng minh các hệ thức sau:

a) sin2α+cos2α=1.

b) 1+tan2α=1cos2α(α90o)

c) 1+cot2α=1sin2α(0o<α<180o)

Phương pháp:

a) Bước 1: Vẽ đường tròn lượng giác, lấy điểm M biểu diễn góc α bất kì.

Bước 2: Xác định sinα,cosα( tương ứng với tung độ và hoành độ của điểm M).

Bước 3: Suy ra đẳng thức cần chứng minh.

b) Bước 1: Viết tanα dưới dạng sinαcosα(α90o), thay vào vế trái.

Bước 2: Biến đổi vế trái bằng cách quy đồng, kết hợp với ý a) để suy ra vế phải.

c) Bước 1: Viết cotα dưới dạng cosαsinα, thay vào vế trái.

Bước 2: Biến đổi vế trái bằng cách quy đồng, kết hợp với ý a) để suy ra vế phải.

Lời giải:

a) Gọi M(x;y) là điểm trên đường tròn đơn vị sao cho ^xOM=α. Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Ta có: {x=cosαy=sinα{cos2α=x2sin2α=y2(1)

{|x|=ON|y|=OP=MN{x2=|x|2=ON2y2=|y|2=MN2(2)

Từ (1) và (2) suy ra sin2α+cos2α=ON2+MN2=OM2 (do ΔOMN vuông tại N)

sin2α+cos2α=1 (vì OM =1). (đpcm)

c) Ta có:  cotα=cosαsinα(0o<α<180o)

1+cot2α=1+cos2αsin2α=sin2αsin2α+cos2αsin2α=sin2α+cos2αsin2α

Mà theo ý a) ta có sin2α+cos2α=1 với mọi góc α

1+cot2α=1sin2α (đpcm)

Bài 3.4 trang 37 SGK Toán lớp 10 tập 1 - Kết Nối Tri Thức:

Cho góc α(0o<α<180o) thỏa mãn tanα=3

Tính giá trị biểu thức: P=2sinα3cosα3sinα+2cosα

Phương pháp:

Chia cả tử và mẫu của P cho cosα.

Lời giải:

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác