Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Toán 10 Chân trời sáng tạo

Chương 4. Hệ thức lượng trong tam giác

Giải bài tập Toán 10 trang 72, 73 Chân trời sáng tạo tập 1 - Bài 2: Định lí côsin và định lí sin. Bài 1 : Tính độ dài cạnh x trong các tam giác sau :

Bài 1 trang 72 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Tính độ dài cạnh x trong các tam giác sau:

Phương pháp: 

Áp dụng định lí cosin

Trả lời: 

a) Áp dụng định lí cosin, ta có:

\(\begin{array}{*{20}{l}}
{{x^2} = 6,{5^2} + {5^2} - 2.6,5.5.\cos {{72}^o} \approx 47,16}\\
{ \Leftrightarrow x = \sqrt {47,16} \approx 6,87}
\end{array}\)

b) Áp dụng định lí cosin, ta có:

\(\begin{array}{l}{x^2} = {\left( {\frac{1}{5}} \right)^2} + {\left( {\frac{1}{3}} \right)^2} - 2.\frac{1}{5}.\frac{1}{3}.\cos {123^o} \approx 0,224\\ \Leftrightarrow x = \sqrt {0,224} \approx 0,473\end{array}\)

Bài 2 trang 72 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Tính độ dài cạnh c trong tam giác ABC ở Hình 14.

 

Phương pháp: 

Áp dụng định lí sin:

\(\frac{AB}{{\sin C}} = \frac{{AC}}{{\sin {B}}}\)

Trả lời: 

Áp dụng định lí sin, ta có:

\(\frac{c}{{\sin {{105}^o}}} = \frac{{12}}{{\sin {{35}^o}}} \Rightarrow c = \frac{{12.\sin {{105}^o}}}{{\sin {{35}^o}}} \approx 20,2\)

Bài 3 trang 72 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Cho tam giác ABC, biết cạnh \(a = 152,\;\widehat B = {79^o},\;\widehat C = {61^o}.\) Tính các góc, các cạnh

còn lại và bán kính đường tròn ngoại tiếp của tam giác đó.

Phương pháp: 

Áp dụng định lí sin:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)

Trả lời: 

Tam giác ABC có

Áp dụng định lí sin ta có: 

Vậy góc và các cạnh còn lại, bán kính đường tròn ngoại tiếp  của tam giác ABC là:

Bài 4 trang 73 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Một công viên có dạng hình tam giác với các kích thước như Hình 15. Tính số đo các góc của tam giác đó.

Phương pháp: 

Áp dụng định lí cosin để tính góc:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}.\)

Trả lời: 

Đặt \(a = BC,b = AC,c = AB\)

Ta có: \(a = 800,b = 700,c = 500.\)

Áp dụng định lí cosin, ta có:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}.\)

Suy ra:

\(\begin{array}{l}\cos A = \frac{{{{700}^2} + {{500}^2} - {{800}^2}}}{{2.700.500}} = \frac{1}{7} \Rightarrow \widehat A = {81^o}47'12,44'';\\\cos B = \frac{{{{500}^2} + {{800}^2} - {{700}^2}}}{{2.500.800}} = \frac{1}{2} \Rightarrow \widehat B = {60^o};\\\cos C = \frac{{{{800}^2} + {{700}^2} - {{500}^2}}}{{2.800.700}} = \frac{{11}}{{14}} \Rightarrow \widehat C = {38^o}12'47,56''.\end{array}\)

Vậy \(\widehat A = {81^o}47'12,44'';\widehat B = {60^o};\widehat C = {38^o}12'47,56''.\)

Bài 5 trang 73 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Tính diện tích một lá cờ hình tam giác cân có độ dài cạnh bên là 90 cm và góc ở đỉnh là \({35^o}.\)

Phương pháp: 

Tính diện tích bằng công thức: \(S = \frac{1}{2}bc\sin A\)

Trả lời: 

 

Kí hiệu các điểm A, B, C như hình trên.

Từ giả thiết ta có: \(AB = AC = 90,\widehat A = {35^o}\)

Áp dụng công thức \(S = \frac{1}{2}bc\sin A\), ta có: \(S = \frac{1}{2}.90.90.\sin {35^o} \approx 2323\;(c{m^2})\)

Bài 6 trang 73 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Cho tam giác ABC có \(AB = 6,AC = 8\) và \(\widehat A = {60^o}.\)

a) Tính diện tích tam giác ABC.

b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích tam giác IBC.

Phương pháp: 

a) Tính diện tích bằng công thức: \(S = \frac{1}{2}bc\sin A\)

b) Tìm a, từ đó suy ra R bằng định lí sin => Tính diện tích tam giác IBC

Trả lời: 

 

Đặt \(a = BC,b = AC,c = AB.\)

a) Áp dụng công thức \(S = \frac{1}{2}bc\sin A\), ta có: \({S_{ABC}} = \frac{1}{2}.8.6.\sin {60^o} = \frac{1}{2}.8.6.\frac{{\sqrt 3 }}{2} = 12\sqrt 3 \)

b) Áp dụng định lí cosin cho tam giác ABC ta được:

\(\begin{array}{l}B{C^2} = {a^2} = {8^2} + {6^2} - 2.8.6.\cos {60^o} = 52\\ \Rightarrow BC = 2\sqrt {13} \end{array}\)

Xét tam giác IBC ta có:

Góc \(\widehat {BIC} = 2.\widehat {BAC} = {120^o}\)(góc ở tâm và góc nội tiếp cùng chắn một cung)

\(IB = IC = R = \frac{a}{{2\sin A}} = \frac{{2\sqrt {13} }}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{{2\sqrt {39} }}{3}.\)

\( \Rightarrow {S_{IBC}} = \frac{1}{2}.\frac{{2\sqrt {39} }}{3}.\frac{{2\sqrt {39} }}{3}\sin {120^o} = \frac{{13\sqrt 3 }}{3}.\)

Bài 7 trang 73 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB, BC, CA lần lượt là 15, 18, 27.

a) Tính diện tích và bán kính đường tròn nội tiếp tam giác ABC.

b) Tính diện tích tam giác GBC.

Phương pháp: 

a) Tính r bằng công thức: \(S = p.r\). Trong đó S tính bởi công thức heron.

b) Tìm a, từ đó suy ra R bằng định lí sin => Tính diện tích tam giác IBC

Trả lời: 

a) Đặt \(a = BC,b = AC,c = AB.\)

Ta có: \(p = \frac{1}{2}(15 + 18 + 27) = 30\)

Áp dụng công thức heron, ta có:

\({S_{ABC}} = \sqrt {30(30 - 15)(30 - 18)(30 - 27)}  = 90\sqrt 2 \)

Và \(r = \frac{S}{p} = \frac{{90\sqrt 2 }}{{30}} = 3\sqrt 2 \)

b) Gọi, H, K lần lượt là chân đường cao hạ từ A và G xuống BC, M là trung điểm BC.

G là trọng tâm tam giác ABC nên \(GM = \frac{1}{3}AM\)

\(\begin{array}{l} \Rightarrow GK = \frac{1}{3}.AH\\ \Rightarrow {S_{GBC}} = \frac{1}{3}.\,{S_{ABC}} = \frac{1}{3}.90\sqrt 2  = 30\sqrt 2 .\end{array}\)

Bài 8 trang 73 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Cho \({h_a}\) là đường cao vẽ từ đỉnh A, R là bán kính đường tròn ngoại tiếp tam giác ABC. Chứngminh hệ

thức:  \({h_a} = 2R\sin B\sin C.\)

Phương pháp: 

Bước 1: Tính \({h_a}\) theo b và sinC

Bước 2: Tính b theo R và sinB. Từ đó suy ra điều phải chứng minh.

Trả lời: 

Đặt \(a = BC,b = AC,c = AB\)

 

Ta có: \(\sin C = \frac{{AH}}{{AC}} = \frac{{{h_a}}}{b} \Rightarrow {h_a} = b.\sin C\)

Theo định lí sin, ta có: \(\frac{b}{{\sin B}} = 2R \Rightarrow b = 2R.\sin B\)

\( \Rightarrow {h_a} = 2R.\sin B.\sin C\)

Bài 9 trang 73 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Cho tam giác ABC có góc B nhọn, AD và CE là hai đường cao.

a) Chứng minh \(\frac{{{S_{BDE}}}}{{{S_{BAC}}}} = \frac{{BD.BE}}{{BA.BC}}.\)

b) Biết rằng \({S_{ABC}} = 9{S_{BDE}}\) và \(DE = 2\sqrt 2 .\) Tính \(\cos B\) và bán kính đường tròn ngoại

tiếp tam giác ABC.

Phương pháp: 

a) Tính diện tích bằng công thức \(S = \frac{1}{2}ac.\sin B\)

b) \(\cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}}\)

Trả lời: 

a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\) cho tam giác ABC và BED, ta có:

\({S_{ABC}} = \frac{1}{2}.BA.BC.\sin B;{S_{BED}} = \frac{1}{2}..BE.BD.\sin B\)

\( \Rightarrow \frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}.BE.BD.\sin B}}{{\frac{1}{2}.BA.BC.\sin B}} = \frac{{BE.BD}}{{BA.BC}}\)

b) Ta có: \(\cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}}\)

Mà \(\frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{1}{9} \Rightarrow \frac{{BD}}{{BA}}.\frac{{BE}}{{BC}} = \frac{1}{9}\)

\( \Rightarrow \cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}} = \frac{1}{3}\)

+) Xét tam giác ABC và tam giác DEB ta có:

\(\frac{{BE}}{{BC}} = \frac{{BD}}{{BA}} = \frac{1}{3}\) và góc B chung

\( \Rightarrow \Delta ABC \sim \Delta DEB\) (cgc)

\( \Rightarrow \frac{{DE}}{{AC}} = \frac{1}{3} \Rightarrow AC = 3.DE = 3.2\sqrt 2  = 6\sqrt 2 .\)

Ta có: \(\cos B = \frac{1}{3} \Rightarrow \sin B = \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}}  = \frac{{2\sqrt 2 }}{3}\) (do B là góc nhọn)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AC}}{{\sin B}} = 2R \Rightarrow R = \frac{{6\sqrt 2 }}{{\frac{{2\sqrt 2 }}{3}}}:2 = \frac{9}{2}\)

Bài 10 trang 73 SGK Toán lớp 10 tập 1 - Chân trời sáng tạo

Câu hỏi:

Cho tứ giác lồi ABCD có các đường chéo \(AC = x,BD = y\) và góc giữa AC và BD bằng \(\alpha .\) Gọi S là diện

tích của tứ giác ABCD.

a) Chứng minh \(S = \frac{1}{2}xy.\sin \alpha \)

b) Nêu kết quả trong trường hợp \(AC \bot BD.\)

Phương pháp: 

a) Tính diện tích 4 tam giác nhỏ theo \(\sin \alpha \).

Chú ý: \(\sin ({180^o} - \alpha ) = \sin \alpha \)

b) \(\alpha  = {90^o}\) thì \(\sin \alpha  = 1\)

Trả lời: 


Gọi O là giao điểm của AC và BD.

a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\), ta có:

\(\begin{array}{l}{S_{OAD}} = \frac{1}{2}.OA.OD.\sin \alpha ;\quad {S_{OBC}} = \frac{1}{2}.OB.OC.\sin \alpha ;\\{S_{OAB}} = \frac{1}{2}.OA.OB.\sin ({180^o} - \alpha );\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin ({180^o} - \alpha ).\end{array}\)

Mà \(\sin ({180^o} - \alpha ) = \sin \alpha \)

\( \Rightarrow {S_{OAB}} = \frac{1}{2}.OA.OB.\sin \alpha ;\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin \alpha .\)

\(\begin{array}{l} \Rightarrow {S_{ABCD}} = \left( {{S_{OAD}} + {S_{OAB}}} \right) + \left( {{S_{OBC}} + {S_{OCD}}} \right)\\ = \frac{1}{2}.OA.\sin \alpha .(OD + OB) + \frac{1}{2}.OC.\sin \alpha .(OB + OD)\\ = \frac{1}{2}.OA.\sin \alpha .BD + \frac{1}{2}.OC.\sin \alpha .BD\\ = \frac{1}{2}.BD.\sin \alpha .(OA + OC)\\ = \frac{1}{2}.AC.BD.\sin \alpha  = \frac{1}{2}.x.y.\sin \alpha .\end{array}\)

b) Nếu \(AC \bot BD\) thì \(\alpha  = {90^o} \Rightarrow \sin \alpha  = 1.\)

\( \Rightarrow {S_{ABCD}} = \frac{1}{2}.x.y.1 = \frac{1}{2}.x.y.\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác