Bài 63 trang 100 sgk toán 8 tập 1
Tìm \(x\) trên hình 90.
Bài giải:
Kẻ \(BH ⊥ CD\)
Tứ giác \(ABHD\) có \(3\) góc vuông nên là hình chữ nhật.
Suy ra \(DH =AB= 10\)
Nên \(HC = 15-10=5\).
Áp dụng định lí Pytago vào tam giác vuông \(BHC\)
\(\eqalign{
& B{H^2} = B{C^2} - H{C^2} \cr&= {13^2} - {5^2} = 169 - 25 = 144 \cr
& BH = x = \sqrt {144} = 12 \cr} \)
Vậy \(x = 12\).
Bài 64 trang 100 sgk toán 8 tập 1
Cho hình bình hành \(ABCD\). Các tia phân giác của các góc \(A, B, C, D\) cắt nhau như trên hình 91. Chứng minh rằng \(EFGH\) là hình chữ nhật.
Bài giải:
Theo giả thiết \(ABCD\) là hình bình hành nên theo tính chất của hình bình hành ta có:
\(\widehat A = \widehat C,\widehat B = \widehat D\) (1)
Theo định lí tổng các góc trong một tứ giác ta có:
\(\widehat A + \widehat C + \widehat B + \widehat D = {360^0}\) (2)
Từ (1) và (2) suy ra: \(\widehat A + \widehat B = {{{{360}^0}} \over 2} = {180^0}\)
\(AG\) là tia phân giác góc \(\widehat A\) nên ta có: \(\widehat {BAG} = {1 \over 2}\widehat A\)
\(BG\) là tia phân giác góc \(\widehat B\) nên ta có: \(\widehat {ABG} = {1 \over 2}\widehat B\)
Do đó: \(\widehat {BAG} + \widehat {ABG} = {1 \over 2}\left( {\widehat A + \widehat B} \right) = {1 \over 2}{.180^0} = {90^0}\)
Xét tam giác \(AGB\) có: \(\widehat {BAG} + \widehat {ABG} = {90^0}\) (3)
Theo định lí tổng ba góc trong một tam giác ta có:
\(\widehat {BAG} + \widehat {ABG} + \widehat {AGB} = {180^0}\) (4)
Từ (3) và (4) suy ra: \(\widehat {AGB} = {90^0}\)
Chứng minh tương tự ta được: \(\widehat {DEC} = \widehat {EHG} = {90^0}\)
Tứ giác \(EFGH\) có ba góc vuông nên là hình chữ nhật.
Bài 65 trang 100 sgk toán 8 tập 1
Tứ giác \(ABCD\) có hai đường chéo vuông góc với nhau. Gọi \(E, F, G, H\) theo thứ tự là trung điểm của các cạnh \(AB, BC, CD, DA\). Tứ giác \(EFGH\) là hình gì ? Vì sao ?
Bài giải:
Ta có \(EB = EA, FB = FC\) (do \(E,F\) là trung điểm của \(AB,BC\))
\(EF\) là đường trung bình của \(∆ABC\)
Do đó \(EF // AC\) (1)
Do \(G,H\) là trung điểm của \(CD,DA) nên
\( HG\) là đường trung bình của \(∆ADC\)
Do đó \(HG // AC\) (2)
Từ (1) và (2) suy ra \(EF // HG\)
Chứng minh tương tự \(EH // FG\)
Do đó \(EFGH\) là hình bình hành.
Ta có: \(EF // AC\) và \(EH//BD\) mà \(AC\bot BD\) nên \(EF\bot EH\)
Hay \(\widehat{FEH} = 90^0\)
Hình bình hành \(EFGH\) có \(\widehat{E} = 90^0\) nên là hình chữ nhật (theo dấu hiệu nhận biết hình chữ nhật).
Bài 66 trang 100 sgk toán 8 tập 1
Đố. Một đội công nhân đang trồng cây trên đoạn đường \(AB\) thì gặp chướng ngại vật che lấp tầm nhìn (h.92). Đội đã dựng các điểm \(C, D, E\) như trên hình vẽ rồi trồng cây tiếp trên đoạn thẳng \(EF\) vuông góc với \(DE\). Vì sao \(AB\) và \(EF\) cùng nằm trên một đường thẳng ?
Bài giải:
Tứ giác \(BCDE\) có:
\(BC // DE\) (vì cùng vuông góc với \(CD\))
\(BC = DE\) (giả thiết)
\(\widehat {BCD} = \widehat {EDC} = {90^0}\)
do đó \(BCDE\) là hình chữ nhật
Suy ra: \(\widehat {CBE} = \widehat {BED} = {90^0}\)
Mặt khác: \(\widehat {CBA} = \widehat {FED} = {90^0}\) (giả thiết)
Ta có: \(\widehat {CBA} + \widehat {CBE} = {90^0} + {90^0} = {180^0}\)
Suy ra \(A,B,E\) thẳng hàng
\(\widehat {FED} + \widehat {BED} = {90^0} + {90^0} = {180^0}\)
Suy ra \(B,E,F\) thẳng hàng
Vậy \(AB\) và \(EF\) cùng nằm trên một đường thẳng.
Giaibaitap.me
Giải bài tập trang 102, 103 bài 10 Đường thẳng song song với một đường thẳng cho trước sgk toán 8 tập 1. Câu 67: Cho đoạn thẳng AB...
Giải bài tập trang 105 bài 11 Hình thoi sgk toán 8 tập 1. Câu 73: Tìm các hình thoi trên hình 102...
Giải bài tập trang 108 bài 12 Hình vuông sgk toán 8 tập 1. Câu 79: Một hình vuông có cạnh bằng...
Giải bài tập trang 109 bài 12 Hình vuông sgk toán 8 tập 1. Câu 83: Các câu sau đúng hay sai ?...