Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 12

CHƯƠNG IV. SỐ PHỨC - SBT TOÁN 12

Giải bài tập trang 209, 210 bài 4 phương trình bậc hai với hệ số thực Sách bài tập (SBT) Giải tích 12. Câu 4.25: Chứng minh rằng số thực a < 0 chỉ có hai căn bậc hai phức...

Câu 4.25 trang 209 sách bài tập (SBT) - Giải tích 12

Chứng minh rằng số thực a < 0 chỉ có hai căn bậc hai phức là \( \pm i\sqrt {|a|} \)

Hướng dẫn làm bài

Giả sử z là một căn bậc hai của a, ta có z2 = a. Vì a < 0 nên:

 \(a =  - |a| =  - {(\sqrt {|a|} )^2}\)

Từ đó suy ra:

 \({z^2} =  - {(\sqrt {|a|} )^2}\)

\(\Rightarrow  {z^2} + {(\sqrt {|a|} )^2} = 0\)

\(\Rightarrow  (z + i\sqrt {|a|} )(z - i\sqrt {|a|} ) = 0\)

Vậy \(z = i\sqrt {|a|} \)  hay \(z =  - i\sqrt {|a|} \).

 


Câu 4.26 trang 210 sách bài tập (SBT) - Giải tích 12

Giải các phương trình sau trên tập số phức:

a) 2x2 + 3x + 4 = 0                          

b) 3x2 + 2x + 7 = 0            

c) 2x4 + 3x2 – 5 = 0

Hướng dẫn làm bài

a) \({x_{1,2}} = {{ - 3 \pm i\sqrt {23} } \over 4}\)  

b) \({x_{1,2}} = {{ - 1 \pm 2i\sqrt 5 } \over 3}\)

c) \({x_{1,2}} =  \pm 1;{x_{3,4}} =  \pm i\sqrt {{5 \over 2}} \).

 


Câu 4.27 trang 210 sách bài tập (SBT) - Giải tích 12

 Biết z1 và z2 là hai nghiệm của phương trình \(2{x^2} + \sqrt 3 x + 3 = 0\) . Hãy tính:

a) \(z_1^2 + z_2^2\)                             b) \(z_1^3 + z_2^3\)           

c) \(z_1^4 + z_2^4\)                          d) \({{{z_1}} \over {{z_2}}} + {{{z_2}} \over {{z_1}}}\)

Hướng dẫn làm bài

Ta có: \({z_1} + {z_2} =  - {{\sqrt 3 } \over 2},{z_1}.{z_2} = {3 \over 2}\)  . Từ đó suy ra:

a) \(z_1^2 + z_2^2 = {({z_1} + {z_2})^2} - 2{z_1}{z_2} = {3 \over 4} - 3 =  - {9 \over 4}\)

b) \(z_1^3 + z_2^3 = ({z_1} + {z_2})(z_1^2 - {z_1}{z_2} + z_2^2)\)

\(=  - {{\sqrt 3 } \over 2}( - {9 \over 4} - {3 \over 2}) = {{15\sqrt 3 } \over 8}\)

c) \(z_1^4 + z_2^4 = (z_1^2 + z_2^2) - 2z_1^2.z_2^2 = {( - {9 \over 4})^2} - 2.{({3 \over 2})^2} = {9 \over {16}}\)

d) \({{{z_1}} \over {{z_2}}} + {{{z_2}} \over {{z_1}}} = {{z_1^2 + z_2^2} \over {{z_1}.{z_2}}} = {{ - {9 \over 4}} \over {{3 \over 2}}} =  - {3 \over 2}\).

 


Câu 4.28 trang 210 sách bài tập (SBT) - Giải tích 12

Chứng minh rằng hai số phức liên hợp z và \(\bar z\) là hai nghiệm của một phương trình bậc hai với hệ số phức.

Hướng dẫn làm bài

Nếu z = a + bi  thì \(z + \bar z = 2a \in R;z.\bar z = {a^2} + {b^2} \in R\)

z và \(\bar z\) là hai nghiệm của phương trình \((x - z)(x - \bar z) = 0\)

  \( \Leftrightarrow  {x^2} - (z + \bar z)x + z.\bar z = 0 \Leftrightarrow  {x^2} - 2ax + {a^2} + {b^2} = 0\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác