Bài 1 trang 91 SGK Hình học 12
Cho hệ toạ độ \(Oxyz\), cho bốn điểm \(A( 1 ; 0 ; 0 ), B( 0 ; 1 ; 0 ), C( 0 ; 0 ; 1 ), D( -2 ; 1 ; -1)\).
a) Chứng minh \(A, B, C, D\) là bốn đỉnh của một tứ diện.
b) Tìm góc giữa hai đường thẳng \(AB\) và \(CD\).
c) Tính độ dài đường cao của hình chóp \(A.BCD\).
Giải
a) Viết phương trình mặt phẳng \((ABC)\): Theo phương trình mặt phẳng theo đoạn chắn, ta có:
\((ABC)\): \({x \over 1} + {y \over 1} + {z \over 1} = 1 \Leftrightarrow x + y + z - 1 = 0\)
Thế các toạ độ của \(D\) vào vế phải của phương trình mặt phẳng \((ABC)\), ta có:
\(-2 + 1 - 1 - 1 = 1 ≠ 0\)
Vậy \(D ∉ (ABC)\) hay bốn điểm \(A, B, C, D\) không đồng phẳng, suy ra đpcm.
b) Gọi \(α\) là góc giữa hai đường thẳng \(AB, CD\) ta có:
\(cos α =\left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right|\)
Do đó, ta tính \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)\). Góc giữa hai vectơ \(\overrightarrow {AB} \),\(\overrightarrow {CD} \) được tính theo công thức:
\(\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = {{\left| {\overrightarrow {AB} .\overrightarrow {CD} } \right|} \over {\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}\)
Ta có: \(\overrightarrow {AB} = ( - 1,1,0)\), \(\overrightarrow {CD} = ( - 2,1, - 2)\)
\(\overrightarrow {AB} .\overrightarrow {CD}= (-1).(-2) + 1.1 + 0.(-2) = 3\)
\(\left| {\overrightarrow {AB} } \right| = \sqrt {{{( - 1)}^2} + {1^2} + {0^2}} = \sqrt 2 \)
\(\left| {\overrightarrow {CD} } \right| = \sqrt {{{( - 2)}^2} + {1^2} + {{( - 2)}^2}} = 3\)
\( \Rightarrow \cos (\overrightarrow {AB} ,\overrightarrow {CD} ) = {3 \over {3\sqrt 2 }} = {{\sqrt 2 } \over 2} \Rightarrow (\overrightarrow {AB} ,\overrightarrow {CD} ) = 45^0\) \( \Rightarrow α = 45^0\)
c) Ta có \(\overrightarrow {BC} = (0; - 1;1),\) \(\overrightarrow {BD} = ( - 2;0; - 1)\)
Gọi \(\overrightarrow n \) là vectơ pháp tuyến của \((BCD)\) thì:
\(\overrightarrow n = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = (-1; -2; 2)\)
Phương trình mặt phẳng \((BCD)\):
\(-1(x - 0) - 2(y - 1) + 2( z - 0) = 0\)
\( \Leftrightarrow x + 2y - 2z - 2 = 0\)
Chiều cao của hình chóp \(A.BCD\) bằng khoảng cách từ điểm \(A\) đến mặt phẳng \((BCD)\):
\(h = d(A,(BCD)) = {{\left| {1 + 2} \right|} \over {\sqrt {{1^2} + {2^2} + {{( - 2)}^2}} }} = {3 \over 3} = 1\)
Bài 2 trang 91 SGK Hình học 12
Trong hệ toạ độ \(Oxyz\), cho mặt cầu \((S)\) có đường kính là \(AB\) biết rằng \(A( 6 ; 2 ; -5), B(-4 ; 0 ; 7)\).
a) Tìm toạ độ tâm \(I\) và tính bán kính \(r\) của mặt cầu \((S)\)
b) Lập phương trình của mặt cầu \((S)\).
c) Lập phương trình của mặt phẳng \((α)\) tiếp xúc với mặt cầu \((S)\) tại điểm \(A\).
Giải
a) Tâm \(I\) của mặt cầu là trung điểm của đoạn thẳng \(AB\):
\(\left\{ \matrix{
{x_1} = {1 \over 2}(6 - 4) \Rightarrow {x_1} = 1 \hfill \cr
{y_1} = {1 \over 2}(2 + 0) \Rightarrow {y_1} = 1 \hfill \cr
{z_1} = {1 \over 2}(7 - 5) \Rightarrow {z_1} = 1 \hfill \cr} \right.\)
Vậy \(I(1; 1; 1)\)
Bán kính \(R = {{AB} \over 2}\)
\(A{B^2} = {\rm{ }}{\left( { - 4{\rm{ }} - {\rm{ }}6} \right)^2} + {\rm{ }}{\left( {{\rm{ }}0{\rm{ }} - {\rm{ }}2} \right)^2} + {\rm{ }}{\left( {7{\rm{ }} + {\rm{ }}5} \right)^2} = {\rm{ }}248\)
\( \Rightarrow AB = \sqrt {248} = 2\sqrt {62} \)
Vậy \(R = {{AB} \over 2} = \sqrt {62} \)
b) Phương trình mặt cầu \((S)\)
\({\left( {x{\rm{ }} - {\rm{ }}1} \right)^2}{\rm{ }} + {\rm{ }}{\left( {y{\rm{ }} - {\rm{ }}1} \right)^2} + {\rm{ }}{\left( {z{\rm{ }} - {\rm{ }}1} \right)^{2}} = {\rm{ }}62\)
\( \Leftrightarrow \) \({x^2}{\rm{ }} + {\rm{ }}{y^2} + {\rm{ }}{z^2} - {\rm{ }}2x{\rm{ }} - {\rm{ }}2y{\rm{ }} - {\rm{ }}2z{\rm{ }} - {\rm{ }}59{\rm{ }} = {\rm{ }}0\)
c) Mặt phẳng tiếp xúc với mặt cầu tại điểm \(A\) chính là mặt phẳng qua \(A\) và vuông góc với bán kính \(IA\). Ta có:
\(\overrightarrow {IA} = (5; 1 ; -6)\)
Phương trình mặt phẳng cần tìm là:
\(5(x - 6) + 1(y - 2) - 6(z + 5) = 0\)
\( \Leftrightarrow 5x + y - 6z - 62 = 0\)
Bài 3 trang 92 SGK Hình học 12
Trong hệ toạ độ \(Oxyz\), cho bốn điểm \(A(-2 ; 6 ; 3), B(1 ; 0 ; 6), C(0; 2 ; -1), D(1 ; 4 ; 0)\).
a) Viết phương trình mặt phẳng \((BCD)\). Suy ra \(ABCD\) là một tứ diện.
b) Tính chiều cao \(AH\) của tứ diện \(ABCD\).
c) Viết phương trình mặt phẳng \((α)\) chứa \(AB\) và song song với \(CD\).
Giải
a) Ta có: \(\overrightarrow {BC} = (-1; 2; -7)\), \(\overrightarrow {BD}= (0; 4; -6)\)
Xét vectơ \(\overrightarrow a = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]\) \( \Rightarrow \overrightarrow a = (16; - 6; - 4) = 2(8; - 3; - 2)\)
Mặt phẳng \((BCD)\) đi qua \(B\) và nhận \(\overrightarrow {a'} = (8; -3; -2)\) làm vectơ pháp tuyến nên có phương trình:
\(8(x - 1) -3y - 2(z - 6) = 0\) \( \Leftrightarrow 8x - 3y - 2z + 4 = 0\)
Thay toạ độ của \(A\) vào phương trình của \((BC)\) ta có:
\(8.(-2) - 3.6 - 2.6 + 4 = -42 ≠ 0\)
Điều này chứng tỏ điểm \(A\) không thuộc mặt phẳng \((BCD)\) hay bốn điểm \(A, B, C, D\) không đồng phẳng, và \(ABCD\) là một tứ diện.
b) Chiều cao \(AH\) là khoảng cách từ \(A\) đến mặt phẳng \((BCD)\):
\(AH = d(A,(BCD))\) = \({{\left| {8.( - 2) - 3.6 - 2.3 + 4} \right|} \over {\sqrt {{8^2} + {{( - 3)}^2} + {{( - 2)}^2}} }} = {{36} \over {\sqrt {77} }}\)
c) Ta có: \(\overrightarrow {AB} = (3; - 6; 3)\), \(\overrightarrow {CD} = ( 1; 2; 1)\)
Mặt phẳng \((α)\) chứa \(AB\) và \(CD\) chính là mặt phẳng đi qua \(A(-2; 6; 3)\) và nhận cặp vectơ \(\overrightarrow {AB} \), \(\overrightarrow {CD} \) làm cặp vectơ chỉ phương, có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right]\)
\(\Rightarrow \overrightarrow n \) = \((-12; 0; 12) = -12(1; 0; -1)\)
Vậy phương trình của \((α)\) là:
\(1(x + 2) + 0(y - 6) - 1(z - 3) = 0 \)\( \Leftrightarrow x - z + 5 = 0\)
Bài 4 trang 92 SGK Hình học 12
Trong hệ toạ độ \(Oxyz\), lập phương trình tham số của đường thẳng:
a) Đi qua hai điểm \(A(1 ; 0 ; -3), B(3 ; -1 ; 0)\).
b) Đi qua điểm \(M(2 ; 3 ; -5)\) và song song với đường thẳng \(∆\) có phương trình.
\(\left\{ \matrix{
x = - 2 + 2t \hfill \cr
y = 3 - 4t \hfill \cr
z = - 5t. \hfill \cr} \right.\)
Giải
a) Đường thẳng \(d\) qua \(A, B\) có vectơ chỉ phương \((2, -1, 3)\) nên phương trình tham số của \(d\) có dạng:
\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = - t \hfill \cr
z = - 3 + 3t \hfill \cr} \right.\)
với \(t ∈ \mathbb{R}\).
b) Đường thẳng \(d // ∆\). Mà \(\overrightarrow u (2, -4, -5)\) là vectơ chỉ phương của \(∆\) nên cũng là vectơ chỉ phương của \(d\). Phương trình tham số của đường thẳng \(d\) là:
\(\left\{ \matrix{
x = 2 + 2s \hfill \cr
y = 3 - 4s \hfill \cr
z = - 5 - 5s \hfill \cr} \right.\)
với \(s ∈ \mathbb{R}\).
Giaibaitap.me
Giải bài tập trang 92, 93 ôn tập chương III - Phương pháp tọa độ trong không gian SGK Hình học 12. Câu 5: Hãy xác định toạ độ tâm và tính bán kính của đường tròn C...
Giải bài tập trang 93 ôn tập chương III - Phương pháp tọa độ trong không gian SGK Hình học 12. Câu 9: Trong hệ toạ độ...
Giải bài tập trang 94, 95, 96, 97 ôn tập chương III - Phương pháp tọa độ trong không gian SGK Hình học 12. Câu 1: Trong không gian Oxyz cho ba vectơ...
Giải bài tập trang 99 ôn tập cuối năm SGK Hình học 12. Câu 1: Cho lăng trụ lục giác đều ABCDEF.A'B'C'D'E'F', O và O' là tâm đường tròn ngoại tiếp hai đáy...