Processing math: 94%
Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 12

CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Giải bài tập trang 134 đề toán tổng hợp chương III - phương pháp tọa độ trong không gian Sách bài tập (SBT) Hình học 12. Câu 3.66: Cho hình chóp S.ABCD có đáy là hình thoi ABCD, AC cắt BD tại gốc tọa độ O...

Bài 3.66 trang 134 sách bài tập (SBT) – Hình học 12

Cho hình chóp S.ABCD có đáy là hình thoi ABCD, AC cắt BD tại gốc tọa độ O. Biết A(2; 0; 0), B(0; 1; 0),S(0;0;22) . Gọi M là trung điểm cạnh SC.

a) Viết phương trình mặt phẳng chứa SA và song song với BM.

b) Tính khoảng cách giữa hai đường thẳng SA và BM.

Hướng dẫn làm bài

a) Ta có  C(-2; 0; 0) và M(1;0;2)

Gọi (α)  là mặt phẳng chứa SA và song song với BM. Hai vecto có giá song song hoặc nằm trên (α)  là SA=(2;0;22)  và BM=(1;1;2)

Suy ra vecto pháp tuyến của (α)   là : n=(22;0;2) hay n=(2;0;1)

Mặt phẳng (α)  có phương trình: 2(x2)+z=0  hay 2x+z22=0

b) Ta có d(SA,BM)=d(B;(α))=|22|2+1=223

Vậy khoảng cách giữa hai đường thẳng SA và BM là  263.

 


Bài 3.67 trang 134 sách bài tập (SBT) – Hình học 12

Cho mặt phẳng (P):  2x – 3y  + 4z – 5 = 0 và mặt cầu (S):

                    x2 + y2 + z2 + 3x + 4y – 5z + 6 = 0

a) Xác định tọa độ tâm I và bán kính r của mặt cầu (S).

b) Tính khoảng cách từ tâm I đến mặt phẳng (P).  Từ đó chứng minh rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn mà ta kí hiệu là (C). Xác định bán kính r’ và tâm H của đường tròn (C) .

Hướng dẫn làm bài:

a) (S) có tâm I(32;2;52) và có bán kính r=94+4+2546=262

b) d(I,(P))=|2.(32)3.(2)+4.(52)5|4+9+16=829<262

Vậy  d(I, (P)) < r

Suy ra mặt phẳng (P) cắt mặt cầu (S) theo đường tròn tâm H bán kính r’.

H chính là hình chiếu vuông góc của I xuống mặt phẳng (P). Gọi Δ là đường thẳng qua I và vuông góc với (P). Ta có vecto chỉ phương của  Δ  là

aΔ=n(P)=(2;3;4)

 Phương trình tham số của  Δ  : {x=32+2ty=23tz=52+4t

 Δ  cắt (P) tại  H(32+2t;23t;52+4t). Ta có:

H(α)2(32+2t)3(23t)+4(52+4t)5=0

29t+8=0t=829

Suy ra tọa độ H(321629;2+2429;523229)  hay 

Ta có r2=r2d2(I,(P))=2646429=24958 . Suy ra  r=24958

 


Bài 3.68 trang 134 sách bài tập (SBT) – Hình học 12

Trong không gian Oxyz, cho bốn điểm  A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1), D(4; 1; 0). Gọi (S) là mặt cầu  đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.

Hướng dẫn làm bài:

Tâm I(x, y, z) của (S) có tọa độ là nghiệm của hệ phương trình

 {IA2=IB2IA2=IC2IA2=ID2

{(x6)2+(y+2)2+(z3)2=x2+(y1)2+(z6)2(x6)2+(y+2)2+(z3)2=(x2)2+y2+(z+1)2(x6)2+(y+2)2+(z3)2=(x4)2+(y1)2+z2

{12x6y6z=128x4y+8z=444x6y+6z=32

{2xyz=22xy+2z=112x3y+3z=16{x=2y=1z=3

Vậy mặt cầu (S) có tâm I(2; -1; 3).

Mặt phẳng (α) tiếp xúc với (S) tại A nên  (α) có vecto pháp tuyến là IA=(4;1;0)

Phương trình mặt phẳng  (α) là

4(x – 6) – (y  +2) = 0  hay  4x – y – 26 = 0.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác