Câu 79 trang 61 Sách bài tập (SBT) Toán 8 tập 2
Với số m và số n bất kì, chứng tỏ rằng
a. \({\left( {m + 1} \right)^2} \ge 4m\)
b. \({m^2} + {n^2} + 2 \ge 2\left( {m + n} \right)\)
Giải:
a. Ta có:
\(\eqalign{ & {\left( {m - 1} \right)^2} \ge 0 \cr & \Leftrightarrow {\left( {m - 1} \right)^2} + 4m \ge 4 \cr & \Leftrightarrow {m^2} - 2m + 1 + 4m \ge 4m \cr & \Leftrightarrow {m^2} + 2m + 1 \ge 4m \cr & \Leftrightarrow {\left( {m + 1} \right)^2} \ge 4m \cr} \)
b. Ta có:
\(\eqalign{ & {\left( {m - 1} \right)^2} \ge 0;{\left( {n - 1} \right)^2} \ge 0 \cr & \Rightarrow {\left( {m - 1} \right)^2} + {\left( {n - 1} \right)^2} \ge 0 \cr & \Leftrightarrow {m^2} - 2m + 1 + {n^2} - 2n + 1 \ge 0 \cr & \Leftrightarrow {m^2} + {n^2} + 2 \ge 2\left( {m + n} \right) \cr} \)
Câu 80 trang 61 Sách bài tập (SBT) Toán 8 tập 2
Cho a > 0 và b > 0, chứng tỏ rằng
\(\left( {a + b} \right)\left( {{1 \over a} + {1 \over b}} \right) \ge 4\)
Giải:
Ta có:
\(\eqalign{ & {\left( {a - b} \right)^2} \ge 0 \cr & \Leftrightarrow {a^2} + {b^2} - 2ab \ge 0 \cr & \Leftrightarrow {a^2} + {b^2} - 2ab + 2ab \ge 2ab \cr & \Leftrightarrow {a^2} + {b^2} \ge 2ab \cr} \)
Vì a > 0, b > 0 nên ab ≥ 0 \( \Rightarrow {1 \over {ab}} > 0\)
\(\eqalign{ & \left( {{a^2} + {b^2}} \right).{1 \over {ab}} \ge 2ab.{1 \over {ab}} \cr & \Leftrightarrow {a \over b} + {b \over a} \ge 2 \cr & \Leftrightarrow 2 + {a \over b} + {b \over a} \ge 2 + 2 \cr & \Leftrightarrow 2 + {a \over b} + {b \over a} \ge 4 \cr & \Leftrightarrow 1 + 1 + {a \over b} + {b \over a} \ge 4 \cr & \Leftrightarrow a\left( {{1 \over a} + {1 \over b}} \right) + b\left( {{1 \over a} + {1 \over b}} \right) \ge 4 \cr & \Leftrightarrow \left( {a + b} \right)\left( {{1 \over a} + {1 \over b}} \right) \ge 4 \cr} \)
Câu 81 trang 62 Sách bài tập (SBT) Toán 8 tập 2
Chứng tỏ diện tích hình vuông cạnh 10m không nhỏ hơn diện tích hình chữ nhật có cùng chu vi.
Giải:
Chu vi hình chữ nhật là 4.10 = 40 (m)
Gọi x (m) là chiều rộng hình chữ nhật. Điều kiện: x < 20.
Khi đó chiều dài hình chữ nhật là 20 – x (m)
Diện tích hình chữ nhật là x(20 – x ) (\({m^2}\))
Ta có:
\(\eqalign{ & {\left( {10 - x} \right)^2} \ge 0 \cr & \Leftrightarrow {10^2} - 20x + {x^2} \ge 0 \cr & \Leftrightarrow {10^2} \ge 20x - {x^2} \cr & \Leftrightarrow {10^2} \ge x\left( {20 - x} \right) \cr} \)
Vậy diện tích hình vuông cạnh 10m không nhỏ hơn diện tích hình chữ nhật cùng chu vi.
Câu 82 trang 62 Sách bài tập (SBT) Toán 8 tập 2
Giải các bất phương trình:
a. \(3\left( {x - 2} \right)\left( {x + 2} \right) < 3{x^2} + x\)
b. \(\left( {x + 4} \right)\left( {5x - 1} \right) > 5{x^2} + 16x + 2\)
Giải:
a. Ta có:
\(\eqalign{ & 3\left( {x - 2} \right)\left( {x + 2} \right) < 3{x^2} + x \cr & \Leftrightarrow 3\left( {{x^2} - 4} \right) \le 3{x^2} + x \cr & \Leftrightarrow 3{x^2} - 12 \le 3{x^2} + x \cr & \Leftrightarrow 3{x^2} - 3{x^2} - x \le 12 \cr & \Leftrightarrow - x \le 12 \Leftrightarrow x \ge - 12 \cr} \)
Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x > - 12} \right\}\)
b. Ta có:
\(\eqalign{ & \left( {x + 4} \right)\left( {5x - 1} \right) > 5{x^2} + 16x + 2 \cr & \Leftrightarrow 5{x^2} - {x^2} + 20x - 4 > 5{x^2} + 16x + 2 \cr & \Leftrightarrow 5{x^2} - {x^2} + 20x - 5{x^2} - 16x > 2 + 4 \cr & \Leftrightarrow 3x > 6 \Leftrightarrow x > 2 \cr} \)
Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x > 2} \right\}\)
Giaibaitap.me
Giải bài tập trang 62 bài ôn tập chương IV - Bất phương trình bậc nhất một ẩn Sách bài tập (SBT) Toán 8 tập 2. Câu 83: Giải phương trình...
Giải bài tập trang 62 bài ôn tập chương IV - Bất phương trình bậc nhất một ẩn Sách bài tập (SBT) Toán 8 tập 2. Câu 87: Với giá trị nào của x thì...
Giải bài tập trang 82, 83 bài 1 định lí Ta-lét trong tam giác Sách bài tập (SBT) Toán 8 tập 2. Câu 1: Viết tỉ số của các cặp đoạn thẳng sau...
Giải bài tập trang 83 bài 1 định lí Ta-lét trong tam giác Sách bài tập (SBT) Toán 8 tập 2. Câu 5: Cho tam giác ABC. Từ điểm D trên cạnh BC, kẻ các đường thẳng song song với các cạnh AB và AC, chúng cắt các cạnh AC và AB theo thứ tự tại F và E...