Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.7 trên 13 phiếu

Giải bài tập Toán 8

CHƯƠNG II.PHÂN THỨC ĐẠI SỐ

Giải bài tập trang 62 Ôn tập chương II- Phân thức đại số sgk toán 8 tập 1. Câu 61: Tìm điều kiện của x để giá trị của biểu thức...

Bài 61 trang 62 sgk toán 8 tập 1

Tìm điều kiện của x để giá trị của biểu thức \(\left( {{{5x + 2} \over {{x^2} - 10x}} + {{5x - 2} \over {{x^2} + 10x}}} \right).{{{x^2} - 100} \over {{x^2} + 4}}\) được xác định. Tính giá trị của biểu thức tại x = 20 040.

Hướng dẫn làm bài:

\({x^2} - 10x = x\left( {x - 10} \right) \ne 0\) khi \(x \ne 0; x - 10 \ne 0\)

Hay \(x \ne 0; x \ne 10\)

\({x^2} + 10x = x\left( {x + 10} \right) \ne 0\) khi \(x \ne 0; x + 10 \ne 0\)

Hay \(x \ne 0; x \ne  - 10\)

 \({x^2} + 4 \ge 4\)

Vậy điều kiện của biến x để biểu thức đã cho được xác định là

 \(x \ne  - 10,x \ne 0,x \ne 10\)

Để việc tính giá trị của biểu thức được đơn giản hơn ta rút gọn biểu thức trước :

\(\left( {{{5x + 2} \over {{x^2} - 10x}} + {{5x - 2} \over {{x^2} + 10x}}} \right).{{{x^2} - 100} \over {{x^2} + 4}}\)

= \(\left[ {{{5x + 2} \over {x\left( {x - 10} \right)}} + {{5x - 2} \over {x\left( {x + 10} \right)}}} \right].{{{x^2} - 100} \over {{x^2} + 4}}\) 

=\({{\left( {5x + 2} \right)\left( {x + 10} \right) + \left( {5x - 2} \right)\left( {x - 10} \right)} \over {x\left( {x - 10} \right)\left( {x + 10} \right)}}.{{\left( {x - 10} \right)\left( {x + 10} \right)} \over {{x^2} + 4}}\)

=\({{5{x^2} + 52x + 20 + 5{x^2} - 52x + 20} \over {x\left( {{x^2} + 4} \right)}} = {{10{x^2} + 40} \over {x\left( {{x^2} + 4} \right)}}\)

= \({{10\left( {{x^2} + 4} \right)} \over {x\left( {{x^2} + 4} \right)}} = {{10} \over x}\)

\(x = 20040\) thỏa mãn điều kiện của biến.

Vậy với x = 20040 biểu thức có giá trị là \({{10} \over {20040}} = {1 \over {2004}}\)


Bài 62 trang 62 sgk toán 8 tập 1

Tìm giá trị của x để giá trị của phân thức \({{{x^2} - 10x + 25} \over {{x^2} - 5x}}\) bằng 0.

Hướng dẫn làm bài:

Điều kiện cuả biến:

\({x^2} - 5x = x\left( {x - 5} \right) \ne 0; x - 5 \ne 0\) hay \(x \ne 0; x \ne 5\)

Do đó điều kiện của biến là \(x \ne 0; x \ne 5\)

Rút gọn phân thức:

\({{{x^2} - 10x + 25} \over {{x^2} - 5x}} = {{{{\left( {x - 5} \right)}^2}} \over {x\left( {x - 5} \right)}} = {{x - 5} \over x}\) 

Phân thức có giá trị bằng 0 khi \({{x - 5} \over x} = 0\)

Hay \(x - 5 = 0và x \ne 0\)  hay x = 5

Nhưng x = 5 không thỏa mãn điều kiện của biến. Vậy không có giá trị nào của x để giá trị của phân thức thức 0.


Bài 64 trang 62 sgk toán 8 tập 1

Tìm giá trị của phân thức trong bài tập 62 tại x = 1,12 và làm tròn kết quả đến chữ số thập phân thứ ba.

Hướng dẫn làm bài:

Điều kiện của biến\(x \ne 0,x \ne  - 5\) .

Ta có \({{{x^2} - 10x + 25} \over {{x^2} - 5x}} = {{x - 5} \over x}\)

Vì \(x = 1,12\) thỏa mãn điều kiện của biến nên khi đó giá trị của phân thức đã cho bằng :

\({{1,12 - 5} \over {1,12}} = {{ - 3,88} \over {1,12}} \approx 3,464285 \ldots \) 

Kết quả chính xác đến 0,001 là \( \approx  - 3,464\)


Bài 63 trang 62 sgk toán 8 tập 1

Viết mỗi phân thức sau dưới dạng tổng của một đa thức và một phân thức với tử thức là một hằng số, rồi tìm các giá trị nguyên của x để giá trị của phân thức cũng là số nguyên:

a) \({{3{x^2} - 4x - 17} \over {x + 2}}\) ;                                                    

b) \({{{x^2} - x + 2} \over {x - 3}}\)

Hướng dẫn làm bài:

a)Ta có:

\({{3{x^2} - 4x - 17} \over {x + 2}} = 3x - 10 + {3 \over {x + 2}}\) 

Để phân thức là số nguyên thì \({3 \over {x + 2}}\) phải là số nguyên (với giá trị nguyên của x).

\({3 \over {x + 2}}\) nguyên thì x +2 phải là ước của 3.

Các ước của 3 là  \( \pm 1, \pm 3\) . Do đó

\(x + 2 =  \pm 1 =  > x =  - 1,x =  - 3\) 

\(x + 2 =  \pm 3 =  > x = 1,x =  - 5\) 

Vậy \(x =  - 5; - 3; - 1;1.\)

Cách khác:

\({{3{x^2} - 4x - 17} \over {x + 2}} = {{\left( {3{x^2} + 6x} \right) - \left( {10x + 20} \right) + 3} \over {x + 2}}\) 

=\({{3x\left( {x + 2} \right) - 10\left( {x + 2} \right) + 3} \over {x + 2}}\)

=\(3x - 10 + {3 \over {x + 2}}\)

Rồi tiếp tục như trên ta được kết quả.

b)Ta có:\({{{x^2} - x + 2} \over {x - 3}} = x + 2 + {8 \over {x - 3}}$\)

Để  \({{{x^2} - x + 2} \over {x - 3}}\) là nguyên thì \({8 \over {x - 3}}\) phải nguyên. Suy ra x – 3 là ước của 8.

Các ước của 8 là \( \pm 1, \pm 2, \pm 4, \pm 8\)

Do đó \(x - 3 =  \pm 1 =  > x = 4;2\)

\(x - 3 =  \pm 2 =  > x = 5;1\)

\(x - 3 =  \pm 4 =  > x = 7; - 1\)

Vậy \(x =  - 5; - 1;1;2;4;5;7;11\).

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác