Bài 57 trang 61 sgk toán 8 tập 1
Chứng tỏ mỗi cặp phân thức sau bằng nhau:
a)\({3 \over {2x - 3}}\) và \({{3x + 6} \over {2{x^2} + x - 6}}\)
b)\({2 \over {x + 4}}\) và \({{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}}\)
Hướng dẫn làm bài:
a) \({3 \over {2x - 3}}\) và \({{3x + 6} \over {2{x^2} + x - 6}}\)
Cách 1: Dùng định nghĩa hai phân thức bằng nhau.
\({3 \over {2x - 3}}\)= \({{3x + 6} \over {2{x^2} + x - 6}}\)
Vì : \(3\left( {2{x^2} + x - 6} \right) = 6{x^2} + 3x - 18\)
=\(6{x^2} + 12x - 9x - 18\)
=\(2x\left( {3x + 6} \right) - 3\left( {3x + 6} \right)\)
=\(\left( {2x - 3} \right)\left( {3x + 6} \right)\)
Cách 2: Rút gọn phân thức
\({{3x + 6} \over {2{x^2} + x - 6}} = {{3\left( {x + 2} \right)} \over {2{x^2} + 4x - 3x - 6}} = {{3\left( {x + 2} \right)} \over {2x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}\)
=\({{3\left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {2x - 3} \right)}} = {3 \over {2x - 3}}\)
b) \({2 \over {x + 4}}\) và \({{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}}\)
Cách 1:\({2 \over {x + 4}} = {{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}}\)
Vì : \(2\left( {{x^3} + 7{x^2} + 12x} \right) = 2{x^3} + 14{x^2} + 24x\)
\(=\left( {x + 4} \right)\left( {2{x^2} + 6x} \right)\)
\(= 2{x^3} + 6{x^2} + 8{x^2} + 24x = 2{x^3} + 14{x^2} + 24x\)
Nghĩa là \(2\left( {{x^3} + 7{x^2} + 12x} \right) = \left( {x + 4} \right)\left( {2{x^2} + 6x} \right)\)
Cách 2: \({{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}} = {{2x\left( {x + 3} \right)} \over {x\left( {{x^2} + 7x + 12} \right)}} = {{2\left( {x + 3} \right)} \over {{x^2} + 3x + 4x + 12}}\)
\( = {{2\left( {x + 3} \right)} \over {x\left( {x + 3} \right) + 4\left( {x + 3} \right)}} = {{2\left( {x + 3} \right)} \over {\left( {x + 3} \right)\left( {x + 4} \right)}} = {2 \over {x + 4}}\)
Bài 58 trang 62 sgk toán 8 tập 1
Thực hiện các phép tính sau:
a) \(\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right):{{4x} \over {10x - 5}}\)
b) \(\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right):\left( {{1 \over x} + x - 2} \right);\)
c) \({1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}.\left( {{1 \over {{x^2} - 2x + 1}} + {1 \over {1 - {x^2}}}} \right).\)
Hướng dẫn làm bài:
a) \(\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right):{{4x} \over {10x - 5}} = {{{{\left( {2x + 1} \right)}^2} - {{\left( {2x - 1} \right)}^2}} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{10x + 5} \over {4x}}\)
=\({{4{x^2} + 4x + 1 - 4{x^2} + 4x - 1} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{5\left( {2x + 1} \right)} \over {4x}}\)
=\({{8x.5\left( {2x + 1} \right)} \over {\left( {2x - 1} \right)\left( {2x + 1} \right).4x}} = {{10} \over {2x - 1}}\)
b) \(\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right):\left( {{1 \over x} + x - 2} \right)\)
=\(\left( {{1 \over {x\left( {x + 1} \right)}} + {{x - 2} \over {x + 1}}} \right):{{1 + {x^2} - 2x} \over x}\)
=\({{1 + x\left( {x - 2} \right)} \over {x\left( {x + 1} \right)}}.{x \over {{x^2} - 2x + 1}}\)
=\({{\left( {{x^2} - 2x + 1} \right)x} \over {x\left( {x + 1} \right)\left( {{x^2} - 2x + 1} \right)}} = {1 \over {x + 1}}\)
c) \({1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}.\left( {{1 \over {{x^2} - 2x + 1}} + {1 \over {1 - {x^2}}}} \right)\)
=\({1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}.\left[ {{1 \over {{{\left( {x - 1} \right)}^2}}} - {1 \over {\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]\)
=\({1 \over {x - 1}} - {{x\left( {{x^2} - 1} \right)} \over {{x^2} + 1}}.{{x + 1 - \left( {x - 1} \right)} \over {{{\left( {x - 1} \right)}^2}.\left( {x + 1} \right)}}\)
=\({1 \over {x - 1}} - {{x\left( {x - 1} \right)\left( {x + 1} \right)} \over {{x^2} + 1}}.{{x + 1 - x + 1} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}\)
=\({1 \over {x - 1}} - {{x\left( {x - 1} \right)\left( {x + 1} \right).2} \over {\left( {{x^2} + 1} \right){{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} = {1 \over {x - 1}} - {{2x} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}}\)
=\({{{x^2} + 1 - 2x} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} = {{{{\left( {x - 1} \right)}^2}} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} = {{x - 1} \over {{x^2} + 1}}\)
Bài 59 trang 62 sgk toán 8 tập 1
a) Cho biểu thức \({{xP} \over {x + P}} - {{yP} \over {y - P}}\). Thay \(P = {{xy} \over {x - y}}\) vào biểu thức đã cho rồi rút gọn biểu thức.
b) Cho biểu thức \({{{P^2}{Q^2}} \over {{P^2} - {Q^2}}}\). Thay \(P = {{2xy} \over {{x^2} - {y^2}}}\) và \(Q = {{2xy} \over {{x^2} + {y^2}}}\)vào biểu thức đã cho rồi rút gọn biểu thức.
Hướng dẫn làm bài:
a) Với \(P = {{xy} \over {x - y}}\)
Ta có:\({{xP} \over {x + P}} - {{yP} \over {y - P}} = {{{{{x^2}y} \over {x - y}}} \over {x + {{xy} \over {x - y}}}} - {{{{x{y^2}} \over {x - y}}} \over {y - {{xy} \over {x - y}}}}\)
=\({{{x^2}y} \over {{x^2}}} - {{x{y^2}} \over {{y^2}}} = y + x = x + y\)
b) Với \(P = {{2xy} \over {{x^2} - {y^2}}}\) và \(Q = {{2xy} \over {{x^2} + {y^2}}}\)
Ta có:\({{{P^2}{Q^2}} \over {{P^2} - {Q^2}}}\)\( = {{{{\left( {{{2xy} \over {{x^2} - {y^2}}}} \right)}^2}.{{\left( {{{2xy} \over {{x^2} + {y^2}}}} \right)}^2}} \over {{{\left( {{{2xy} \over {{x^2} - {y^2}}}} \right)}^2} - {{\left( {{{2xy} \over {{x^2} + {y^2}}}} \right)}^2}}}\)\( = {{{{\left[ {{{2xy.2xy} \over {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)}}} \right]}^2}} \over {{{4{x^2}{y^2}} \over {{{\left( {{x^2} - {y^2}} \right)}^2}}} - {{4{x^2}{y^2}} \over {{{\left( {{x^2} + {y^2}} \right)}^2}}}}}\)
=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}\left[ {{{\left( {{x^2} + {y^2}} \right)}^2} - {{\left( {{x^2} - {y^2}} \right)}^2}} \right]} \over {{{\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right]}^2}}}}}\)
=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}.({x^4} + 2{x^2}{y^2} + {y^4} - {x^4} + 2{x^2}{y^2} - {y^4}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}}\)
=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}.4{x^2}{y^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}} = {{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}} = 1\)
Bài 60 trang 62 sgk toán 8 tập 1
Cho biểu thức \(\left( {{{x + 1} \over {2x - 2}} + {3 \over {{x^2} - 1}} - {{x + 3} \over {2x + 2}}} \right).{{4{x^2} - 4} \over 5}\).
a) Hãy tìm điều kiện của x để giá trị của biểu thức được xác định.
b) Chứng minh rằng khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x.
Hướng dẫn làm bài:
a) \(2x - 2 = 2\left( {x - 1} \right) \ne 0\) khi \(x - 1 \ne 0\) hay \(x \ne 1\)
\({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right) \ne 0\) khi \(x - 1 \ne 0\) và \( x + 1 \ne 0\)
hay \(x \ne 1\) và \( x \ne - 1\)
\(2x + 2 = 2\left( {x + 1} \right) \ne 0\) khi \(x + 1 \ne 0\) hay \(x \ne - 1\)
Do đó điều kiện để giá trị của biểu thức được xác định là \(x \ne - 1,x \ne 1\)
b) Để chứng minh biểu thức không phục thuộc vào biến x ta phải chứng tỏ rằng có thể biến đổi biểu thức này thành một hằng số.
Thật vậy:\(\left( {{{x + 1} \over {2x - 2}} + {3 \over {{x^2} - 1}} - {{x + 3} \over {2x + 2}}} \right).{{4{x^2} - 4} \over 5}\)
=\(\left[ {{{x + 1} \over {2\left( {x - 1} \right)}} + {3 \over {\left( {x - 1} \right)\left( {x + 1} \right)}} - {{x + 3} \over {2\left( {x + 1} \right)}}} \right].{{4{x^2} - 4} \over 5}\)
=\({{{{\left( {x + 1} \right)}^2} + 6 - \left( {x + 3} \right)\left( {x - 1} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5}\)
=\({{{x^2} + 2x + 1 + 6 - {x^2} - 2x + 3} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5}\)
=\({{10} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5}\)
=\({{10.4.\left( {x - 1} \right)\left( {x + 1} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right).5}} = {{10.2} \over 5} = 4\)
Giaibaitap.me
Giải bài tập trang 62 Ôn tập chương II- Phân thức đại số sgk toán 8 tập 1. Câu 61: Tìm điều kiện của x để giá trị của biểu thức...
Giải bài tập trang 66, 67 bài 1 Tứ giác sgk toán lớp 8 tập 1. Câu 1: Tìm x ở hình 5, hình 6:...
Giải bài tập trang 70, 71 bài 2 Hình thang sgk toán 8 tập 1. Câu 6: Dùng thước và êke, ta có thể kiểm tra được hai đường thẳng...
Giải bài tập trang 74, 75 bài 3 Hình thang cân sgk toán 8 tập 1. Câu 11: Tính độ dài các cạnh của hình thang cân ABCD...