Trang chủ
Bình chọn:
3.6 trên 45 phiếu

Giải bài tập Toán 8

CHƯƠNG IV.BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

Giải bài tập trang 51 bài 5 Phương trình chứa dấu giá trị tuyệt đối sgk toán 8 tập 2. Câu 35: Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:...

Bài 35 trang 51 sgk toán 8 tập 2

Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:

a) A = 3x + 2 + |5x| trong hai trường hợp: x ≥ 0 và x < 0;

b) B = |4x| -2x + 12 trong hai trường hợp: x ≤ 0 và x > 0;

c) C = |x - 4| - 2x + 12 khi x > 5;

d) D = 3x + 2 + |x + 5|

Hướng dẫn giải:

 a) A = 3x + 2 + |5x|

=> A = 3x + 2 + 5x khi x ≥ 0

     A = 3x + 2 - 5x khi x < 0

Vậy A = 8x + 2 khi x ≥ 0

      A = -2x + 2 khi x < 0

b) B = 4x - 2x + 12 khi x ≥ 0

    B = -4x -2x + 12 khi x < 0

Vậy B = 2x + 12 khi x ≥ 0

      B = -6x khi x < 0

c) Với x > 5 => x - 4 > 1 hay x - 4 dương nên

C = x - 4 - 2x + 12 = -x + 8

Vậy với x > 5 thì C = -x + 8

d) D= 3x + 2 + x+ 5 khi x + 5 ≥ 0

    D = 3x + 2 - (x + 5) khi x + 5 < 0

Vậy D = 4x + 7 khi x ≥ -5

      D = 2x - 3 khi x < -5

       

   

     


Bài 36 trang 51 sgk toán 8 tập 2

Giải các phương trình:

a) |2x| = x - 6;                  b) |-3x| = x - 8;

c) |4x| = 2x + 12;              d) |-5x| - 16 = 3x.

Hướng dẫn giải:

a) |2x| = x - 6 

|2x| = x - 6 ⇔ 2x = x - 6 khi x ≥ 0 ⇔ x = -6 không thoả mãn x ≥ 0

|2x| = x - 6 ⇔ -2x = x - 6 khi x < 0 ⇔ 3x = 6 ⇔ x = 2 không thoả mãn x < 0

Vậy phương trình vô nghiệm

b) |-3x| = x - 8 

|-3x| = x - 8  ⇔ -3x = x - 8 khi -3x ≥ 0 ⇔ x ≤ 0

                    ⇔ 4x = 8 

                    ⇔ x = 2 (không thoả mãn ≤ 0)

|-3x| = x - 8  ⇔ 3x = x - 8 khi -3x < 0 ⇔ x > 0

                    ⇔ 2x = -8

                    ⇔  x = -4 (không thoả mãn x < 0)

Vậy phương trình vô nghiệm

c) |4x| = 2x + 12

|4x| = 2x + 12 ⇔ 4x = 2x + 12 khi 4x ≥ 0 ⇔ x ≥ 0

                      ⇔ 2x = 12

                      ⇔ x = 6 (thoả mãn điều kiện x ≥ 0)

 |4x| = 2x + 12 ⇔ -4x = 2x + 12 khi 4x < 0 ⇔ x < 0

                       ⇔ 6x = -12 

                       ⇔ x = -2 (thoả mãn điều kiện x < 0)

Vậy phương trình có hai nghiệm x = 6 và x = -2

d) |-5x| - 16 = 3x

|-5x| - 16 = 3x ⇔ -5x - 16 = 3x khi -5x ≥ 0 ⇔ x ≤ 0

                      ⇔ 8x = -16

                      ⇔ x = -2 (thoả mãn điều kiện x ≤ 0)

|-5x| - 16 = 3x ⇔ 5x -16 = 3x khi -5x < 0 ⇔ x > 0

                      ⇔ 2x = 16

                      ⇔ x = 8 (thoả mãn điều kiện x > 0)

Vậy phương trình có hai nghiệm x = -2, x= 8


Bài 37 trang 51 sgk toán 8 tập 2

Giải các phương trình:

a) |x - 7| = 2x + 3;                    b) |x + 4| = 2x - 5;

c) |x + 3| = 3x - 1;                     d) |x - 4| + 3x = 5.

Hướng dẫn giải:

a) |x - 7| = 2x + 3

|x - 7| = 2x + 3 ⇔ x - 7 = 2x + 3 khi x - 7 ≥ 0 ⇔ x ≥ 7

                       ⇔ x      = -10 (không thoả mãn điều kiện x ≥ 7)

|x - 7| = 2x + 3 ⇔ -x + 7 = 2x + 3 khi x - 7 < 0 ⇔ x < 7

                       ⇔ 3x      = 4

                       ⇔ x       = \( \frac{4}{3}\) (thoả mãn điều kiện x < 7)

Vậy phương trình có nghiệm x = \( \frac{4}{3}\)

b) |x + 4| = 2x - 5 ⇔ x + 4 = 2x - 5 khi x + 4 ≥ 0 ⇔ x ≥ -4

                           ⇔ x       = 9 ( thoả mãn điều kiện x ≥ -4)

 |x + 4| = 2x - 5 ⇔ -x - 4 = 2x - 5 khi x + 4 < 0 ⇔ x < -4

                        ⇔ 3x      = 1

                        ⇔ x       = \( \frac{1}{3}\) (không thoả mãn điều kiện x < -4)

Vậy phương trình có nghiệm x = 9

c) |x + 3| = 3x - 1 

|x + 3| = 3x - 1 ⇔ x + 3 = 3x - 1 khi x + 3 ≥ 0 ⇔ x ≥ -3

                       ⇔ 3x     = 4

                       ⇔ x       = \( \frac{4}{3}\) (thoả mãn điều kiện x ≥ -3)

|x + 3| = 3x - 1 ⇔ -x - 3 = 3x - 1 khi x < -3

                       ⇔ 4x      = -2

                       ⇔ x        = \( -\frac{1}{2}\) (không thoả mãn điều kiện x < -3)

Vậy phương trình có nghiệm x = \( \frac{4}{3}\)

d) |x - 4| + 3x = 5

|x - 4| + 3x = 5 ⇔ x - 4 + 3x = 5 khi x ≥ 4

                       ⇔ 4x             = 9

                       ⇔ x              = \( \frac{9}{4}\) (không thoả mãn điều kiện x ≥ 4)

 |x - 4| + 3x = 5 ⇔ -x + 4 + 3x = 5 khi x < 4

                        ⇔ 2x              = 1

                        ⇔ x                = \( \frac{1}{2}\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác