Bài 5.17 trang 222 sách bài tập (SBT) - Giải tích 12
Giải các bất phương trình sau:
a) \({({1 \over 2})^{{{\log }_{{1 \over 3}}}({x^2} - 3x + 1)}} < 1\)
b) \(4{x^2} + {3.3^{\sqrt x }} + x{.3^{\sqrt x }} < 2{x^2}{.3^{\sqrt x }} + 2x + 6\)
c) \({\log _x}4.{\log _2}{{5 - 12x} \over {12x - 8}} \ge 2\)
Hướng dẫn làm bài:
a) Điều kiện \(\left[ {\matrix{{x > {{3 + \sqrt 5 } \over 2}} \cr {x < {{3 - \sqrt 5 } \over 2}} \cr} } \right.\)
Vì \(0 < {1 \over 2} < 1\) và \(1 = {({1 \over 2})^0}\) nên ta có:
\({({1 \over 2})^{{{\log }_{{1 \over 3}}}({x^2} - 3x + 1)}} < 16\)
\(\Leftrightarrow {\log _{{1 \over 3}}}({x^2} - 3x + 1) > 0\)
\(\Leftrightarrow {x^2} - 3x + 1 < 1 \Leftrightarrow 0 < x < 3\)
Kết hợp với điều kiện, ta được nghiệm của bất phương trình đã cho là \(\left[ {\matrix{{0 < x < {{3 - \sqrt 5 } \over 2}} \cr {{{3 + \sqrt 5 } \over 2} < x < 3} \cr} } \right.\)
b) Ta có bất phương trình đã cho tương đương với
\(4{x^2} + {3.3^{\sqrt x }} + x{.3^{\sqrt x }} - 2{x^2}{.3^{\sqrt x }} - 2x - 6 < 0\)
\(\Leftrightarrow (3 + x - 2{x^2}){3^{\sqrt x }} - 2(x - 2{x^2} + 3) < 0\)
\(\Leftrightarrow ( - 2{x^2} + x + 3)({3^{\sqrt x }} - 2) < 0\)
\(\Leftrightarrow \left[ {\matrix{{\left\{ {\matrix{{{3^{\sqrt x }} - 2 < 0} \cr { - 2{x^2} + x + 3 > 0} \cr {x \ge 0} \cr}\,\,\,\, (1)} \right.} \cr {\left\{ {\matrix{{{3^{\sqrt x }} - 2 > 0} \cr { - 2{x^2} + x + 3 < 0} \cr {x \ge 0} \cr}\,\,\,\, (2)} \right.} \cr} } \right.\)
\((1) \Leftrightarrow \left\{ {\matrix{{x < \log _3^22} \cr {x \ge 0} \cr { - 1 < x < {3 \over 2}} \cr} } \right. \Leftrightarrow 0 \le x < \log _3^22\) (vì \(\log _3^22 < 1 < {3 \over 2}\))
\((2) \Leftrightarrow \left\{ {\matrix{{x > \log _3^22} \cr {x \ge 0} \cr {\left[ {\matrix{{x < - 1} \cr {x > {3 \over 2}} \cr} } \right.} \cr} } \right. \Leftrightarrow x > {3 \over 2}\)
Vậy nghiệm của bất phương trình là \(0 \le x < \log _3^22\) hoặc \(x > {3 \over 2}\)
c) Điều kiện: \(\left\{ {\matrix{{x > 0} \cr {x \ne 1} \cr {{{5 - 12x} \over {12x - 8}} > 0} \cr} } \right. \Leftrightarrow {5 \over {12}} < x < {2 \over 3}\,\,\,\,(*)\)
Bất phương trình đã cho tương đương với
\({2 \over {{{\log }_2}x}}.{\log _2}{{5 - 12x} \over {12x - 8}} \ge 2 \Leftrightarrow {\log _2}{{5 - 12x} \over {12x - 8}} \le {\log _2}x\)
(vì khi \(x \in ({5 \over {12}};{2 \over 3})\) thì \({\log _2}x < 0\) )
\( \Leftrightarrow {{5 - 12x} \over {12x - 8}} - x \le 0\)
\(\Leftrightarrow {{(6x + 5)(1 - 2x)} \over {12x - 8}} \le 0\)
\(\left[ {\matrix{{ - {5 \over 6} \le x \le {1 \over 2}} \cr {x > {2 \over 3}} \cr} } \right.\).
Kết hợp với điều kiện (*), ta có \({5 \over {12}} < x \le {1 \over 2}\)
Bài 5.18 trang 222 sách bài tập (SBT) - Giải tích 12
Giải các bất phương trình sau:
a) \({(0,5)^{{1 \over x}}} \ge 0,0625\)
b) \({\log _{0,2}}({x^2} - 4) \ge - 1\)
c) \({\log _2}{\log _{0,5}}({2^x} - {{15} \over {16}}) \le 2\)
d) \({\log _3}({16^x} - {2.12^x}) \le 2x + 1\)
Hướng dẫn làm bài:
a) Bất phương trình đã cho tương đương với
\({({1 \over 2})^{{1 \over x}}} \ge {1 \over {16}} \Leftrightarrow {({1 \over 2})^{{1 \over x}}} \ge {({1 \over 2})^4}\)
\(\Leftrightarrow {1 \over x} \le 4 \Leftrightarrow {1 \over x} - 4 \le 0 \Leftrightarrow {{1 - 4x} \over x} \le 0 \Leftrightarrow \left[ {\matrix{{x \ge {1 \over 4}} \cr {x < 0} \cr} } \right.\)
b) Điều kiện: \(\left[ {\matrix{{x > 2} \cr {x < - 2} \cr} } \right.\)
Bất phương trình đã cho tương đương với
\({\log _{0,2}}({x^2} - 4) \ge {\log _{0,2}}0,{2^{ - 1}} = {\log _{0,2}}5\)
\( \Leftrightarrow {x^2} - 4 \le 5\) (vì 0,2 < 1) \( \Leftrightarrow {x^2} - 9 \le 0 \Leftrightarrow - 3 \le x \le 3\)
Kết hợp với điều kiện, ta được \(\left[ {\matrix{{2 < x \le 3} \cr { - 3 \le x < - 2} \cr} } \right.\)
c) Bất phương trình đã cho tương đương với \(0 < {\log _{0,5}}({2^x} - {{15} \over {16}}) \le 4\)
\( \Leftrightarrow 1 > {2^x} - {{15} \over {16}} \ge 0,{5^4}\)
\(\Leftrightarrow {{31} \over {16}} > {2^x} \ge 1\)
\(\Leftrightarrow {\log _2}{{31} \over {16}} > x \ge 0\)
\( \Leftrightarrow 0 \le x < {\log _2}31 - 4\)
Ở đây, chúng ta đã áp dụng tính đồng biến và nghịch biến của các hàm số logarit và hàm số mũ với cơ số lớn hơn 1 và nhỏ hơn 1.
d) Bất phương trình đã cho tương đương với \(0 < {16^x} - {2.12^x} \le {3^{2x + 1}}\)
\(\Leftrightarrow 0 < {4^x}{.4^x} - {2.4^x}{.3^x} \le {3^x}{.3^x}.3\)
\(\Leftrightarrow 0 < {({4 \over 3})^{2x}} - 2{({4 \over 3})^x} \le 3\) (1)
(Ta đã chia cả hai vế cho \({9^x}\;\left( {{9^x} > {\rm{ }}0{\rm{ }}} \right)\))
Đặt \({({4 \over 3})^x} = t(t > 0)\) , ta có hệ bất phương trình:
\(\left\{ {\matrix{{{t^2} - 2t \le 3} \cr {{t^2} - 2t > 0} \cr {t > 0} \cr} } \right.\)
\(\Leftrightarrow \left\{ {\matrix{{t > 0} \cr {{t^2} - 2t - 3 \le 0} \cr {{t^2} - 2t > 0} \cr} } \right.\)
\(\Leftrightarrow \left\{ {\matrix{{t > 0} \cr { - 1 \le t \le 3} \cr {\left[ {\matrix{{t > 2} \cr {t < 0} \cr} } \right.} \cr} } \right. \Leftrightarrow 2 < t \le 3\)
Từ đó, ta có \(2 < {({4 \over 3})^x} \le 3 < = > {\log _{{4 \over 3}}}2 < x \le {\log _{{4 \over 3}}}3\).
6
Bài 5.19 trang 222 sách bài tập (SBT) - Giải tích 12
Tính các tích phân sau:
a) \(\int\limits_{ - 2}^4 {{{({{x - 2} \over {x + 3}})}^2}dx} \) (đặt t = x +3)
b) \(\int\limits_{ - 4}^6 {(|x + 3| - |x - 4|)dx} \)
c) \(\int\limits_{ - 3}^2 {{{dx} \over {\sqrt {x + 7} + 3}}} \) (đặt \(t = \sqrt {x + 7} \) hoặc \(t = \sqrt {x + 7} + 3\) )
d) \(\int\limits_0^{{\pi \over 2}} {{{\cos x} \over {1 + 4\sin x}}} dx\)
e)\(\int\limits_1^2 {{{{x^9}} \over {{x^{10}} + 4{x^5} + 4}}dx} \) (đặt t = x5)
g) \(\int\limits_0^3 {(x + 2){e^{2x}}dx} \)
h) \(\int\limits_2^5 {{{\sqrt {4 + x} } \over x}dx} \) (đặt \(t = \sqrt {4 + x} \) )
Hướng dẫn làm bài:
a) Đổi biến \( t = x + 3 \Rightarrow x – 2 = t – 5\) . Khi x = - 2 thì t = 1, khi x = 4 thì t = 7, ta có:
\(\int\limits_{ - 2}^4 {{{({{x - 2} \over {x + 3}})}^2}dx = \int\limits_1^7 {(1 - {{10} \over t} + {{25} \over {{t^2}}}} } )dt\)
\(= (t - 10\ln t - {{25} \over t})\left| {\matrix{7 \cr 1 \cr} } \right. = 27{3 \over 7} - 10\ln 7\)
b)\(\int\limits_{ - 4}^6 {(|x + 3| - |x - 4|)dx}\)
\( = - 7\int\limits_{ - 4}^{ - 3} {dx} + \int\limits_{ - 3}^4 {(2x - 1)dx} + \int\limits_4^6 {7dx} = 7\)
c) Đổi biến \(t = \sqrt {x + 7} \) , ta có \(I = \int\limits_2^3 {{{2tdt} \over {t + 3}}} = 2 - 6\ln 1,2\)
Nếu đổi biến \(t = \sqrt {x + 7} + 3\) thì ta có \(I = \int\limits_5^6 {(2 - {6 \over t})dt} \)
d) Đổi biến \(t = 1 + 4\sin x\) , ta có \(I = {1 \over 4}\int\limits_1^5 {{{dt} \over t}} = {1 \over 4}\ln 5\)
e) Đổi biến \(t = {x^5}\)
\(\eqalign{
& I = {1 \over 5}\int\limits_1^{32} {{{tdt} \over {{t^2} + 4t + 4}}} \cr
& = {1 \over 5}\int\limits_1^{32} {{{(t + 2 - 2)dt} \over {{{(t + 2)}^2}}}} \cr
& = {1 \over 5}\int\limits_1^{32} {{\rm{[}}{1 \over {t + 2}} - {2 \over {{{(t + 2)}^2}}}{\rm{]}}dt} \cr
& = {1 \over 5}\left[ {\ln (t + 2) + {2 \over {t + 2}}} \right]\left| {\matrix{{32} \cr 1 \cr} = {1 \over 5}(\ln {{34}\over 3} - {{31} \over {51}})} \right. \cr} \)
g) Đặt \(u = x + 2,dv = {e^{2x}}dx \Rightarrow du = dx,v = {1 \over 2}{e^{2x}}\)
Ta có \(I = {1 \over 2}(x + 2){e^{2x}}\left| {\matrix{3 \cr 0 \cr} } \right. - {1 \over 2}\int\limits_0^3 {{e^{2x}}} dx\)
\(= {1 \over 2}(5{e^6} - 2) - {1 \over 4}({e^6} - 1) = {3 \over 4}(3{e^6} - 1)\)
h) Đổi biến \(t = \sqrt {4 + x} \)
\(I = 2\int\limits_{\sqrt 6 }^3 {(1 + {1 \over {t - 2}} - {1 \over {t + 2}})dt}\)
\(= 2(t + \ln {{t - 2} \over {t + 2}})\left| {\matrix{3 \cr {\sqrt 6 } \cr} } \right. \)
\(= 2[3 - \sqrt 6 - \ln (25 - 10\sqrt 6 ){\rm{]}}\)
Bài 5.20 trang 222 sách bài tập (SBT) - Giải tích 12
Tính:
a) \(\int\limits_{ - 1}^2 {(5{x^2} - x + {e^{0,5x}})dx} \)
b) \(\int\limits_{0,5}^2 {(2\sqrt x - {3 \over {{x^3}}} + \cos x)dx} \)
c) \(\int\limits_1^2 {{{dx} \over {\sqrt {2x + 3} }}} \) (đặt \(t = \sqrt {2x + 3} \) )
d) \(\int\limits_1^2 {\root 3 \of {3{x^3} + 4} {x^2}dx} \) (đặt \(t = \root 3 \of {3{x^3} + 4} \))
e) \(\int\limits_{ - 2}^2 {(x - 2)|x|dx} \)
g) \(\int\limits_1^0 {x\cos xdx} \)
h)\(\int\limits_{{\pi \over 6}}^{{\pi \over 2}} {{{1 + \sin 2x + \cos 2x} \over {\sin x + \cos x}}} dx\)
i) \(\int\limits_0^{{\pi \over 2}} {{e^x}\sin xdx} \)
k) \(\int\limits_1^e {{x^2}{{\ln }^2}xdx} \)
Hướng dẫn làm bài
a) Đáp số: \(13{1 \over 2} + 2(e - {1 \over {\sqrt e }})\)
b) Đáp số: \({{7\sqrt 2 } \over 3} - 5{5 \over 8} + \sin 2 - \sin {1 \over 2}\)
c) Đáp số: \(\sqrt 7 - \sqrt 5 \)
d) Đổi biến \(t = \root 3 \of {3{x^3} + 4} \)
\(\Rightarrow {t^3} = 3{x^3} + 4 \Rightarrow 3{t^2}dt = 9{x^2}dx \Rightarrow {x^2}dx = {1 \over 3}{t^2}dt\)
Ta có
\(\eqalign{
& \int\limits_1^2 {\root 3 \of {3{x^3} + 4} } {x^2}dx = {1 \over 3}\int\limits_{\root 3 \of 7 }^{\root 3 \of {28} } {{t^3}dt} \cr & = {1 \over {12}}{t^4}\left| {\matrix{{\root 3 \of {28} } \cr {\root 3 \of 7 } \cr} } \right. = {{7\root 3 \of 7 (4\root 3 \of 4 - 1)} \over {12}} \cr} \)
e)
\(\eqalign{
& \int\limits_{ - 2}^2 {(x - 2)|x|dx} \cr
& = \int\limits_{ - 2}^0 {(2x - {x^2})dx + \int\limits_0^2 {({x^2} - 2x)dx} } \cr
& = - {{20} \over 3} - {4 \over 3} = - 8 \cr} \)
g)
\(\eqalign{& \int\limits_1^0 {x\cos xdx = x\sin x\left| {\matrix{0 \cr 1 \cr} } \right.} - \int\limits_1^0 {\sin xdx} \cr & = - \sin 1 + \cos x\left| {\matrix{0 \cr 1 \cr} } \right. = 1 - (\sin 1 + \cos 1) \cr} \)
h) Ta có:
\(\eqalign{
& 1 + \sin 2x + \cos 2x \cr
& = 1 + 2\sin x\cos x + 2{\cos ^2}x - 1 \cr
& = 2\cos x(\sin x + \cos x) \cr} \)
Từ đó, ta có đáp số là 1.
i) Áp dụng phương pháp tính tích phân từng phần hai lần, cả hai lần đều đặt \({e^x}dx = dv \Rightarrow v = {e^x}\) . Ta có:
\(\eqalign{& I = \int\limits_0^{{\pi \over 2}} {{e^x}\sin xdx} = {e^x}\sin x\left| {\matrix{{{\pi \over 2}} \cr 0 \cr} } \right. - \int\limits_0^{{\pi \over 2}} {{e^x}\cos xdx} \cr & = {e^{{\pi \over 2}}} - \left[ {{e^x}\cos x\left| {\matrix{{{\pi \over 2}} \cr 0 \cr} + \int\limits_0^{{\pi \over 2}} {{e^x}\sin xdx} } \right.} \right] \cr & = {e^{{\pi \over 2}}} + 1 - I \cr & \Rightarrow I = {{{e^{{\pi \over 2}}} + 1} \over 2} \cr} \)
k) Lấy tích phân theo phương pháp tính tích phân từng phầ;n hai lần: lần thứ nhất đặt \(u = {\ln ^2}x\) , lần thứ hai đặt \(u = \ln x\) và có đáp số là \({1 \over {27}}(5{e^3} - 2)\).
Giaibaitap.me
Giải bài tập trang 223 ôn tập cuối năm Sách bài tập (SBT) Giải tích 12. Câu 5.21: Tính diện tích của hình phẳng giới hạn bởi các đường sau...
Giải bài tập trang 223, 224 ôn tập cuối năm Sách bài tập (SBT) Giải tích 12. Câu 5.25: Tính...
Giải đề tự kiểm tra trang 12 Sách bài tập (SBT) Giải tích 12. Câu 1: Cho hàm số ...
Giải bài tập trang 224 ôn tập cuối năm Sách bài tập (SBT) Giải tích 12. Câu 5.28: Giải hệ phương trình sau...