Câu 9 trang 26 Sách bài tập (SBT) Toán 8 tập 1
Rút gọn các phân thức sau:
a. \({{14x{y^5}\left( {2x - 3y} \right)} \over {21{x^2}y{{\left( {2x - 3y} \right)}^2}}}\)
b. \({{8xy{{\left( {3x - 1} \right)}^3}} \over {12{x^3}\left( {1 - 3x} \right)}}\)
c. \({{20{x^2} - 45} \over {{{\left( {2x + 3} \right)}^2}}}\)
d.\({{5{x^2} - 10xy} \over {2{{\left( {2y - x} \right)}^3}}}\)
e. \({{80{x^3} - 125x} \over {3\left( {x - 3} \right) - \left( {x - 3} \right)\left( {8 - 4x} \right)}}\)
f. \({{9 - {{\left( {x + 5} \right)}^2}} \over {{x^2} + 4x + 4}}\)
g. \({{32x - 8{x^2} + 2{x^3}} \over {{x^3} + 64}}\)
h. \({{5{x^3} + 5x} \over {{x^4} - 1}}\)
i. \({{{x^2} + 5x + 6} \over {{x^2} + 4x + 4}}\)
Giải:
a. \({{14x{y^5}\left( {2x - 3y} \right)} \over {21{x^2}y{{\left( {2x - 3y} \right)}^2}}}\) \(= {{2{y^4}} \over {3x\left( {2x - 3y} \right)}}\)
b. \({{8xy{{\left( {3x - 1} \right)}^3}} \over {12{x^3}\left( {1 - 3x} \right)}}\) \( = {{ - 8xy{{\left( {3x - 1} \right)}^3}} \over {12{x^2}\left( {3x - 1} \right)}} = {{ - 2y{{\left( {3x - 1} \right)}^2}} \over {3x}}\)
c. \({{20{x^2} - 45} \over {{{\left( {2x + 3} \right)}^2}}}\) \( = {{5\left( {4{x^2} - 9} \right)} \over {{{\left( {2x + 3} \right)}^2}}} = {{5\left( {2x + 3} \right)\left( {2x - 3} \right)} \over {{{\left( {2x + 3} \right)}^2}}} = {{5\left( {2x - 3} \right)} \over {2x + 3}}\)
d. \({{5{x^2} - 10xy} \over {2{{\left( {2y - x} \right)}^3}}}\) \( = {{ - 5x\left( {2y - x} \right)} \over {2{{\left( {2y - x} \right)}^3}}} = {{ - 5x} \over {2{{\left( {2y - x} \right)}^2}}}\)
e. \({{80{x^3} - 125x} \over {3\left( {x - 3} \right) - \left( {x - 3} \right)\left( {8 - 4x} \right)}}\) \( = {{5x\left( {16{x^2} - 25} \right)} \over {\left( {x - 3} \right)\left( {3 - 8 + 4x} \right)}} = {{5x\left( {16{x^2} - 25} \right)} \over {\left( {x - 3} \right)\left( {4x - 5} \right)}} = {{5x\left( {4x + 5} \right)} \over {x - 3}}\)
f. \({{9 - {{\left( {x + 5} \right)}^2}} \over {{x^2} + 4x + 4}}\) \( = {{\left( {3 + x + 5} \right)\left( {3 - x - 5} \right)} \over {{{\left( {x + 2} \right)}^2}}} = {{ - \left( {8 + x} \right)\left( {x + 2} \right)} \over {{{\left( {x + 2} \right)}^2}}} = {{ - \left( {8 + x} \right)} \over {x + 2}}\)
g. \({{32x - 8{x^2} + 2{x^3}} \over {{x^3} + 64}}\) \( = {{2x\left( {16 - 4x + {x^2}} \right)} \over {\left( {x + 4} \right)\left( {{x^2} - 4x + 16} \right)}} = {{2x} \over {x + 4}}\)
h. \({{5{x^3} + 5x} \over {{x^4} - 1}}\)\( = {{5x\left( {{x^2} + 1} \right)} \over {\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)}} = {{5x} \over {{x^2} - 1}}\)
i. \({{{x^2} + 5x + 6} \over {{x^2} + 4x + 4}}\) \( = {{{x^2} + 2x + 3x + 6} \over {{{\left( {x + 2} \right)}^2}}} = {{x\left( {x + 2} \right) + 3\left( {x + 2} \right)} \over {{{\left( {x + 2} \right)}^2}}} = {{\left( {x + 2} \right)\left( {x + 3} \right)} \over {{{\left( {x + 2} \right)}^2}}} = {{x + 3} \over {x + 2}}\)
Câu 10 trang 26 Sách bài tập (SBT) Toán 8 tập 1
Chứng minh các đẳng thức sau:
a. \({{{x^2}y + 2x{y^2} + {y^3}} \over {2{x^2} + xy - {y^2}}} = {{xy + {y^2}} \over {2x - y}}\)
b. \({{{x^2} + 3xy + 2{y^2}} \over {{x^3} + 2{x^2}y - x{y^2} - 2{y^3}}} = {1 \over {x - y}}\)
Giải:
a. Biến đổi vế trái :
\({{{x^2}y + 2x{y^2} + {y^3}} \over {2{x^2} + xy - {y^2}}} = {{y\left( {{x^2} + 2xy + {y^2}} \right)} \over {2{x^2} + 2xy - xy - {y^2}}} = {{y{{\left( {x + y} \right)}^2}} \over {2x\left( {x + y} \right) - y\left( {x + y} \right)}}\)
\( = {{y{{\left( {x + y} \right)}^2}} \over {\left( {x + y} \right)\left( {2x - y} \right)}} = {{y\left( {x + y} \right)} \over {2x - y}} = {{xy + {y^2}} \over {2x - y}}\)
Vế trái bằng vế phải, đẳng thức được chứng minh.
b. Biến đổi vế trái:
\({{{x^2} + 3xy + 2{y^2}} \over {{x^3} + 2{x^2}y - x{y^2} - 2{y^3}}} = {{{x^2} + xy + 2xy + 2{y^2}} \over {{x^2}\left( {x + 2y} \right) - {y^2}\left( {x + 2y} \right)}} = {{x\left( {x + y} \right) + 2y\left( {x + y} \right)} \over {\left( {x + 2y} \right)\left( {{x^2} - {y^2}} \right)}}\)
\( = {{\left( {x + y} \right)\left( {x + 2y} \right)} \over {\left( {x + 2y} \right)\left( {x + y} \right)\left( {x - y} \right)}} = {1 \over {x - y}}\)
Vế trái bằng vế phải, đẳng thức được chứng minh.
Câu 11 trang 26 Sách bài tập (SBT) Toán 8 tập 1
Cho hai phân thức \({{{x^3} - {x^2} - x + 1} \over {{x^4} - 2{x^2} + 1}}\) , \({{5{x^3} + 10{x^2} + 5x} \over {{x^3} + 3{x^2} + 3x + 1}}\). Theo bài tập 8, có vô số cặp phân thức có cùng mẫu thức và bằng cặp phân thức đã cho. Hãy tìm cặp phân thức như thế với mẫu thức là đa thức có bậc thấp nhất.
Giải:
\({{{x^3} - {x^2} - x + 1} \over {{x^4} - 2{x^2} + 1}}\) \( = {{{x^2}\left( {x - 1} \right) - \left( {x - 1} \right)} \over {{{\left( {{x^2} - 1} \right)}^2}}} = {{\left( {{x^2} - 1} \right)\left( {x - 1} \right)} \over {{{\left( {x + 1} \right)}^2}{{\left( {x - 1} \right)}^2}}}\)
\( = {{\left( {x - 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)} \over {{{\left( {x + 1} \right)}^2}{{\left( {x - 1} \right)}^2}}} = {1 \over {x + 1}}\)
\({{5{x^3} + 10{x^2} + 5x} \over {{x^3} + 3{x^2} + 3x + 1}} = {{5x\left( {{x^2} + 2x + 1} \right)} \over {{{\left( {x + 1} \right)}^3}}} = {{5x{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 1} \right)}^3}}} = {{5x} \over {x + 1}}\)
Câu 12 trang 27 Sách bài tập (SBT) Toán 8 tập 1
Tìm x, biết:
a. \({a^2}x + x = 2{a^4} - 2\)với a là hằng số;
b. \({a^2}x + 3ax + 9 = {a^2}\)với a là hằng số, a ≠ 0 và a ≠ −3.
Giải:
a. \({a^2}x + x = 2{a^4} - 2\)
\(\eqalign{ & x\left( {{a^2} + 1} \right) = 2\left( {{a^4} - 1} \right) \cr & x = {{2\left( {{a^4} - 1} \right)} \over {{a^2} + 1}} = {{2\left( {{a^2} - 1} \right)\left( {{a^2} + 1} \right)} \over {{a^2} + 1}} = 2\left( {{a^2} - 1} \right) \cr} \)
b. \({a^2}x + 3ax + 9 = {a^2}\)
\(\eqalign{ & \Rightarrow ax\left( {a + 3} \right) = {a^2} - 9 \cr & x = {{{a^2} - 9} \over {a\left( {a + 3} \right)}} = {{\left( {a - 3} \right)\left( {a + 3} \right)} \over {a\left( {a + 3} \right)}} = {{a - 3} \over a} \cr} \) (với a ≠ 0, a ≠ −3)
Giaibaitap.me
Giải bài tập trang 27 bài 3 rút gọn phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 3.1: Rút gọn phân thức...
Giải bài tập trang 27, 28 bài 4 quy đồng mẫu thức nhiều phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 13: Quy đồng mẫu thức các phân thức...
Giải bài tập trang 28 bài 4 quy đồng mẫu thức nhiều phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 4.1: Quy đồng mẫu thức ba phân thức...
Giải bài tập trang 28, 29 bài 5 phép cộng các phân thức đại số Sách bài tập (SBT) Toán 8 tập 1. Câu 17: Cộng các phân thức cùng mẫu thức...