Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3 trên 12 phiếu

Giải sách bài tập Toán 8

CHƯƠNG II. PHÂN THỨC ĐẠI SỐ

Giải bài tập trang 28, 29 bài 5 phép cộng các phân thức đại số Sách bài tập (SBT) Toán 8 tập 1. Câu 17: Cộng các phân thức cùng mẫu thức...

Câu 17 trang 28 Sách bài tập (SBT) Toán 8 tập 1

Cộng các phân thức cùng mẫu thức

a. \({{1 - 2x} \over {6{x^3}y}} + {{3 + 2y} \over {6{x^3}y}} + {{2x - 4} \over {6{x^3}y}}\)

b. \({{{x^2} - 2} \over {x{{\left( {x - 1} \right)}^2}}} + {{2 - x} \over {x{{\left( {x - 1} \right)}^2}}}\)

c. \({{3x + 1} \over {{x^2} - 3x + 1}} + {{{x^2} - 6x} \over {{x^2} - 3x + 1}}\)

d. \({{{x^2} + 38x + 4} \over {2{x^2} + 17x + 1}} + {{3{x^2} - 4x - 2} \over {2{x^2} + 17x + 1}}\)

Giải:

a. \({{1 - 2x} \over {6{x^3}y}} + {{3 + 2y} \over {6{x^3}y}} + {{2x - 4} \over {6{x^3}y}}\) \( = {{1 - 2x + 3 + 2y + 2x - 4} \over {6{x^3}y}} = {{2y} \over {6{x^3}y}} = {1 \over {3{x^3}}}\)

b. \({{{x^2} - 2} \over {x{{\left( {x - 1} \right)}^2}}} + {{2 - x} \over {x{{\left( {x - 1} \right)}^2}}}\) \( = {{{x^2} - 2 + 2 - x} \over {x{{\left( {x - 1} \right)}^2}}} = {{x\left( {x - 1} \right)} \over {x{{\left( {x - 1} \right)}^2}}} = {1 \over {x - 1}}\)

c. \({{3x + 1} \over {{x^2} - 3x + 1}} + {{{x^2} - 6x} \over {{x^2} - 3x + 1}}\) \( = {{3x + 1 + {x^2} - 6x} \over {{x^2} - 3x + 1}} = {{{x^2} - 3x + 1} \over {{x^2} - 3x + 1}} = 1\)

d. \({{{x^2} + 38x + 4} \over {2{x^2} + 17x + 1}} + {{3{x^2} - 4x - 2} \over {2{x^2} + 17x + 1}}\) \( = {{{x^2} + 38x + 4 + 3{x^2} - 4x - 2} \over {2{x^2} + 17x + 1}} = {{4{x^2} + 34x + 2} \over {2{x^2} + 17x + 1}} = {{2\left( {2{x^2} + 17x + 1} \right)} \over {2{x^2} + 17x + 1}} = 2\)


Câu 18 trang 28 Sách bài tập (SBT) Toán 8 tập 1

Cộng các phân thức khác mẫu thức:

a. \({5 \over {6{x^2}y}} + {7 \over {12x{y^2}}} + {{11} \over {18xy}}\)

b. \({{4x + 2} \over {15{x^3}y}} + {{5y - 3} \over {9{x^2}y}} + {{x + 1} \over {5x{y^3}}}\)

c. \({3 \over {2x}} + {{3x - 3} \over {2x - 1}} + {{2{x^2} + 1} \over {4{x^2} - 2x}}\)

d. \({{{x^3} + 2x} \over {{x^3} + 1}} + {{2x} \over {{x^2} - x + 1}} + {1 \over {x + 1}}\)

Giải:

a. \({5 \over {6{x^2}y}} + {7 \over {12x{y^2}}} + {{11} \over {18xy}}\)\( = {{30y} \over {36{x^2}{y^2}}} + {{21x} \over {36{x^2}{y^2}}} + {{22xy} \over {36{x^2}{y^2}}} = {{30y + 21x + 22xy} \over {36{x^2}{y^2}}}\)

b. \({{4x + 2} \over {15{x^3}y}} + {{5y - 3} \over {9{x^2}y}} + {{x + 1} \over {5x{y^3}}}\)\(\eqalign{  &  = {{3{y^2}\left( {4x + 2} \right)} \over {45{x^3}{y^3}}} + {{5x{y^2}\left( {5y - 3} \right)} \over {45{x^3}{y^3}}} + {{9{x^2}\left( {x + 1} \right)} \over {45{x^3}{y^3}}}  \cr  &  = {{12x{y^2} + 6{y^2} + 25x{y^3} - 15x{y^2} + 9{x^3} + 9{x^2}} \over {45{x^3}{y^3}}} = {{6{y^2} + 25x{y^3} - 3x{y^2} + 9{x^3} + 9{x^2}} \over {45{x^3}{y^3}}} \cr} \)

c. \({3 \over {2x}} + {{3x - 3} \over {2x - 1}} + {{2{x^2} + 1} \over {4{x^2} - 2x}}\)\( = {3 \over {2x}} + {{3x - 3} \over {2x - 1}} + {{2{x^2} + 1} \over {2x\left( {2x - 1} \right)}}\)

\(\eqalign{  &  = {{3\left( {2x - 1} \right)} \over {2x\left( {2x - 1} \right)}} + {{2x\left( {3x - 3} \right)} \over {2x\left( {2x - 1} \right)}} + {{2{x^2} + 1} \over {2x\left( {2x - 1} \right)}} = {{6x - 3 + 6{x^2} - 6x + 2{x^2} + 1} \over {2x\left( {2x - 1} \right)}}  \cr  &  = {{8{x^2} - 2} \over {2x\left( {2x - 1} \right)}} = {{2\left( {4{x^2} - 1} \right)} \over {2x\left( {2x - 1} \right)}} = {{\left( {2x + 1} \right)\left( {2x - 1} \right)} \over {x\left( {2x - 1} \right)}} = {{2x + 1} \over x} \cr} \)

d. \({{{x^3} + 2x} \over {{x^3} + 1}} + {{2x} \over {{x^2} - x + 1}} + {1 \over {x + 1}}\)\( = {{{x^3} + 2x} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} + {{2x} \over {{x^2} - x + 1}} + {1 \over {x + 1}}\)

\(\eqalign{  &  = {{{x^3} + 2x} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} + {{2x\left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} + {{{x^2} - x + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}  \cr  &  = {{{x^3} + 2x + 2{x^2} + 2x + {x^2} - x + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = {{{x^3} + 3{x^2} + 3x + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = {{{{\left( {x + 1} \right)}^3}} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}  \cr  &  = {{{{\left( {x + 1} \right)}^2}} \over {{x^2} - x + 1}} \cr} \)


Câu 19 trang 29 Sách bài tập (SBT) Toán 8 tập 1

Dùng quy tắc đổi dấu để tìm mẫu thức chung rồi thực hiện phép cộng:

a. \({4 \over {x + 2}} + {2 \over {x - 2}} + {{5x - 6} \over {4 - {x^2}}}\)

b. \({{1 - 3x} \over {2x}} + {{3x - 2} \over {2x - 1}} + {{3x - 2} \over {2x - 4{x^2}}}\)

c. \({1 \over {{x^2} + 6x + 9}} + {1 \over {6x - {x^2} - 9}} + {x \over {{x^2} - 9}}\)

d. \({{{x^2} + 2} \over {{x^3} - 1}} + {2 \over {{x^2} + x + 1}} + {1 \over {1 - x}}\)

e. \({x \over {x - 2y}} + {x \over {x + 2y}} + {{4xy} \over {4{y^2} - {x^2}}}\)

Giải:

a. \({4 \over {x + 2}} + {2 \over {x - 2}} + {{5x - 6} \over {4 - {x^2}}}\) \( = {4 \over {x + 2}} + {2 \over {x - 2}} + {{6 - 5x} \over {\left( {x + 2} \right)\left( {x - 2} \right)}}\)

\(\eqalign{  &  = {{4\left( {x - 2} \right)} \over {\left( {x + 2} \right)\left( {x - 2} \right)}} + {{2\left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {x - 2} \right)}} + {{6 - 5x} \over {\left( {x + 2} \right)\left( {x - 2} \right)}} = {{4x - 8 + 2x + 4 + 6 - 5x} \over {\left( {x + 2} \right)\left( {x - 2} \right)}}  \cr  &  = {{x + 2} \over {\left( {x + 2} \right)\left( {x - 2} \right)}} = {1 \over {x - 2}} \cr} \)

b. \({{1 - 3x} \over {2x}} + {{3x - 2} \over {2x - 1}} + {{3x - 2} \over {2x - 4{x^2}}}\) \( = {{1 - 3x} \over {2x}} + {{3x - 2} \over {2x - 1}} + {{2 - 3x} \over {2x\left( {2x - 1} \right)}}\)

\(\eqalign{  &  = {{\left( {1 - 3x} \right)\left( {2x - 1} \right)} \over {2x\left( {2x - 1} \right)}} + {{\left( {3x - 2} \right).2x} \over {2x\left( {2x - 1} \right)}} + {{2 - 3x} \over {2x\left( {2x - 1} \right)}}  \cr  &  = {{2x - 1 - 6{x^2} + 3x + 6{x^2} - 4x + 2 - 3x} \over {2x\left( {2x - 1} \right)}} = {{1 - 2x} \over {2x\left( {2x - 1} \right)}} = {{ - \left( {2x - 1} \right)} \over {2x\left( {2x - 1} \right)}} = {{ - 1} \over {2x}} \cr} \)

c. \({1 \over {{x^2} + 6x + 9}} + {1 \over {6x - {x^2} - 9}} + {x \over {{x^2} - 9}}\)\( = {1 \over {{{\left( {x + 3} \right)}^2}}} + {{ - 1} \over {{{\left( {x - 3} \right)}^2}}} + {x \over {\left( {x + 3} \right)\left( {x - 3} \right)}}\)

\(\eqalign{  &  = {{{{\left( {x - 3} \right)}^2}} \over {{{\left( {x + 3} \right)}^2}{{\left( {x - 3} \right)}^2}}} + {{ - {{\left( {x + 3} \right)}^2}} \over {{{\left( {x + 3} \right)}^2}{{\left( {x - 3} \right)}^2}}} + {{x\left( {x + 3} \right)\left( {x - 3} \right)} \over {{{\left( {x + 3} \right)}^2}{{\left( {x - 3} \right)}^2}}}  \cr  &  = {{{x^2} - 6x + 9 - {x^2} - 6x - 9 + {x^3} - 9x} \over {{{\left( {x + 3} \right)}^2}{{\left( {x - 3} \right)}^2}}} = {{{x^3} - 21x} \over {{{\left( {x + 3} \right)}^2}{{\left( {x - 3} \right)}^2}}} \cr} \)

d. \({{{x^2} + 2} \over {{x^3} - 1}} + {2 \over {{x^2} + x + 1}} + {1 \over {1 - x}}\)\( = {{{x^2} + 2} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + {2 \over {{x^2} + x + 1}} + {{ - 1} \over {x - 1}}\)

\(\eqalign{  &  = {{{x^2} + 2} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + {{2\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + {{ - \left( {{x^2} + x + 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}  \cr  &  = {{{x^2} + 2 + 2x - 2 - {x^2} - x - 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {{x - 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {1 \over {{x^2} + x + 1}} \cr} \)

e. \({x \over {x - 2y}} + {x \over {x + 2y}} + {{4xy} \over {4{y^2} - {x^2}}}\)\( = {x \over {x - 2y}} + {x \over {x + 2y}} + {{ - 4xy} \over {\left( {x + 2y} \right)\left( {x - 2y} \right)}}\)

\(\eqalign{  &  = {{x\left( {x + 2y} \right)} \over {\left( {x - 2y} \right)\left( {x + 2y} \right)}} + {{x\left( {x - 2y} \right)} \over {\left( {x - 2y} \right)\left( {x + 2y} \right)}} + {{ - 4xy} \over {\left( {x - 2y} \right)\left( {x + 2y} \right)}}  \cr  &  = {{{x^2} + 2xy + {x^2} - 2xy - 4xy} \over {\left( {x - 2y} \right)\left( {x + 2y} \right)}} = {{2{x^2} - 4xy} \over {\left( {x - 2y} \right)\left( {x + 2y} \right)}} = {{2x\left( {x - 2y} \right)} \over {\left( {x - 2y} \right)\left( {x + 2y} \right)}}  \cr  &  = {{2x} \over {x + 2y}} \cr} \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác