Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 8

CHƯƠNG IV. HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

Giải bài tập trang 149, 150 bài 8 diện tích xung quanh của hình chóp đều Sách bài tập (SBT) Toán 8 tập 2. Câu 58: Tính diện tích toàn phần của hình chóp tam giác đều theo các kích thước cho ở hình 145...

Câu 58 trang 149 Sách bài tập (SBT) Toán 8 tập 2

Tính diện tích toàn phần của hình chóp tam giác đều theo các kích thước cho ở hình 145.

(xem hình 145)

 

Giải:

Hình vẽ đã cho là hình chóp có ba mặt xung quanh và mặt đáy là các tam giác đều bằng nhau có cạnh là a. Áp dụng định lí Pi-ta-go vào tam giác vuông CIA, ta có:  

Suy ra: \(C{I^2} = A{C^2} - A{I^2} = {a^2} - {\left( {{a \over 2}} \right)^2} = {{3{a^2}} \over 4}\)

Vậy CI = \({{a\sqrt 3 } \over 2}\)

Ta có: \({S_{ABC}} = {1 \over 2}.a.{{a\sqrt 3 } \over 2} = {{{a^2}\sqrt 3 } \over 4}\) (đvdt)

Vậy \({S_{TP}} = 4.{{{a^2}\sqrt 3 } \over 4} = {a^2}\sqrt 3 \) (đvdt)


Câu 59 trang 150 Sách bài tập (SBT) Toán 8 tập 2

Cho hình chóp tứ giác đều (h.146). Xem hình và điền số thích hợp vào các ô còn trống ở bảng sau:

(hình 146 trang 150 sbt)

 

Chiều cao (h)

8

15

 

 

Trung đoạn l

10

 

15

 

Cạnh đáy

 

16

12

10

Sxq

 

 

 

120

Giải:

Chiều cao (h)

8

15

\(\sqrt {189} \)

\(\sqrt {11} \)

Trung đoạn l

10

17

15

6

Cạnh đáy

12

16

12

10

Sxq

240

544

360

120

 


Câu 60 trang 150 Sách bài tập (SBT) Toán 8 tập 2

Một hình chóp tứ giác đều có độ dài cạnh đáy là 6cm, chiều cao là 4cm thì diện tích xung quanh là:

A. 128cm2

B. 96cm2

C. 120cm2

D. 60cm2

E. 84cm2

Hãy chọn kết quả đúng.

Giải:

Kẻ trung đoạn của hình chóp.

Áp dụng định lí Pi-ta-go ta tính được trung đoạn của hình chóp bằng 5cm.

Diện tích xung quanh của hình chóp là: \({S_{xq}} = 4.{1 \over 2}.6.5 = 60(c{m^2})\)

Vậy chọn đáp án D.


Câu 61 trang 150 Sách bài tập (SBT) Toán 8 tập 2

Hình chóp đều S.ABC có cạnh đáy a = 12cm, chiều cao h = 8cm. Hãy tính diện tích xung quanh của hình chóp đó.

Giải:

(hình trang 155 sgbt)

 

Kẻ AO kéo dài cắt BC tại I.

Ta có: AI ⊥ BC (tính chất tam giác đều)

BI = IC = \({1 \over 2}BC\)

Áp dụng định lí Pi-ta-go vào tam giác vuông AIB, ta có: $A{B^2} = B{I^2} + A{I^2}$

Suy ra:

 \(\eqalign{  & A{I^2} = A{B^2} - B{I^2} = {12^2} - {6^2} = 108  \cr  & AI = \sqrt {108} (cm) \cr} \)

Vì tam giác ABC đều nên O là trọng tâm của tam giác ABC.

Ta có: \(OI = {1 \over 3}AI = {1 \over 3}\sqrt {108} \) (cm)

Áp dụng định lí Pi-ta-go vào tam giác vuông SOI, ta có:

\(\eqalign{  & S{I^2} = S{O^2} + O{I^2} = {8^2} + {1 \over 9}.108 = 76  \cr  & SI = \sqrt {76} (cm) \cr} \)

Vậy \({S_{xq}} = Pd = \left[ {\left( {12.3} \right):2} \right].\sqrt {76}  = 18\sqrt {76} (c{m^2})\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác