Câu 22 trang 8 Sách bài tập (SBT) Toán 8 tập 2
Giải các phương trình sau:
a. \({{5\left( {x - 1} \right) + 2} \over 6} - {{7x - 1} \over 4} = {{2\left( {2x + 1} \right)} \over 7} - 5\)
b. \({{3\left( {x - 3} \right)} \over 4} + {{4x - 10,5} \over {10}} = {{3\left( {x + 1} \right)} \over 5} + 6\)
c. \({{2\left( {3x + 1} \right) + 1} \over 4} - 5 = {{2\left( {3x - 1} \right)} \over 5} - {{3x + 2} \over {10}}\)
d. \({{x + 1} \over 3} + {{3\left( {2x + 1} \right)} \over 4} = {{2x + 3\left( {x + 1} \right)} \over 6} + {{7 + 12x} \over {12}}\)
Giải:
a. \({{5\left( {x - 1} \right) + 2} \over 6} - {{7x - 1} \over 4} = {{2\left( {2x + 1} \right)} \over 7} - 5\)
\(\eqalign{ & \Leftrightarrow {{5x - 5 + 2} \over 6} - {{7x - 1} \over 4} = {{4x + 2} \over 7} - 5 \cr & \Leftrightarrow {{5x - 3} \over 6} - {{7x - 1} \over 4} = {{4x + 2} \over 7} - 5 \cr & \Leftrightarrow 14\left( {5x - 3} \right) - 21\left( {7x - 1} \right) = 12\left( {4x + 2} \right) - 5.84 \cr & \Leftrightarrow 70x - 42 - 147x + 21 = 48x + 24 - 420 \cr & \Leftrightarrow 70x - 147x - 48x = 24 - 420 + 42 - 21 \cr & \Leftrightarrow - 125x = - 375 \cr & \Leftrightarrow x = 3 \cr} \)
Phương trình có nghiệm x = 3
b. \({{3\left( {x - 3} \right)} \over 4} + {{4x - 10,5} \over {10}} = {{3\left( {x + 1} \right)} \over 5} + 6\)
\(\eqalign{ & \Leftrightarrow {{3x - 9} \over 4} + {{4x - 10,5} \over {10}} = {{3x + 3} \over 5} + 6 \cr & \Leftrightarrow 5\left( {3x - 9} \right) + 2\left( {4x - 10,5} \right) = 4\left( {3x + 3} \right) + 6.20 \cr & \Leftrightarrow 15x - 45 + 8x - 21 = 12x + 12 + 120 & \Leftrightarrow 15x + 8x - 12x = 12 + 120 + 45 + 21 \cr & \Leftrightarrow 11x = 198 \cr & \Leftrightarrow x = 18 \cr} \)
Phương trình có nghiệm x = 18
c. \({{2\left( {3x + 1} \right) + 1} \over 4} - 5 = {{2\left( {3x - 1} \right)} \over 5} - {{3x + 2} \over {10}}\)
\(\eqalign{ & \Leftrightarrow {{6x + 2 + 1} \over 4} - 5 = {{6x - 2} \over 5} - {{3x + 2} \over {10}} \cr & \Leftrightarrow {{6x + 3} \over 4} - 5 = {{6x - 2} \over 5} - {{3x + 2} \over {10}} \cr & \Leftrightarrow 5\left( {6x + 3} \right) - 5.20 = 4\left( {6x - 2} \right) - 2\left( {3x + 2} \right) \cr & \Leftrightarrow 30x + 15 - 100 = 24x - 8 - 6x - 4 \cr & \Leftrightarrow 30x - 24x + 6x = - 8 - 4 - 15 + 100 \cr & \Leftrightarrow 12x = 73 \Leftrightarrow x = {{73} \over {12}} \cr} \)
Phương trình có nghiệm \(x = {{73} \over {12}}\)
d. \({{x + 1} \over 3} + {{3\left( {2x + 1} \right)} \over 4} = {{2x + 3\left( {x + 1} \right)} \over 6} + {{7 + 12x} \over {12}}\)
\(\eqalign{ & \Leftrightarrow {{x + 1} \over 3} + {{6x + 3} \over 4} = {{2x + 3x + 3} \over 6} + {{7 + 12x} \over {12}} \cr & \Leftrightarrow {{x + 1} \over 3} + {{6x + 3} \over 4} = {{5x + 3} \over 6} + {{7 + 12x} \over {12}} \cr & \Leftrightarrow 4\left( {x + 1} \right) + 3\left( {6x + 3} \right) = 2\left( {5x + 3} \right) + 7 + 12x \cr & \Leftrightarrow 4x + 4 + 18x + 9 = 10x + 6 + 7 + 12 \cr & \Leftrightarrow 4x + 18x - 10x = 6 + 7 + 12 - 9 \cr & \Leftrightarrow 0x = 0 \cr} \)
Phương trình có vô số nghiệm.
Câu 23 trang 8 Sách bài tập (SBT) Toán 8 tập 2
Tìm giá trị của k sao cho:
a. Phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
b. Phương trình \(2\left( {2x + 1} \right) + 18 = 3\left( {x + 2} \right)\left( {2x + k} \right)\) có nghiệm x = 1
Giải:
a. Thay x = 2 vào phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40, ta có:
\(\eqalign{ & \left( {2.2 + 1} \right)\left( {9.2 + 2k} \right) - 5\left( {2 + 2} \right) = 40 \cr & \Leftrightarrow \left( {4 + 1} \right)\left( {18 + 2k} \right) - 5.4 = 40 \cr & \Leftrightarrow 5\left( {18 + 2k} \right) - 20 = 40 \cr & \Leftrightarrow 90 + 10k - 20 = 40 \cr & \Leftrightarrow 10k = 40 - 90 + 20 \cr & \Leftrightarrow 10k = - 30 \cr & \Leftrightarrow k = - 3 \cr} \)
Vậy khi k = -3 thì phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
b. Thay x = 1 vào phương trình \(2\left( {2x + 1} \right) + 18 = 3\left( {x + 2} \right)\left( {2x + k} \right)\), ta có:
\(\eqalign{ & 2\left( {2.1 + 1} \right) + 18 = 3\left( {1 + 2} \right)\left( {2.1 + k} \right) \cr & \Leftrightarrow 2\left( {2 + 1} \right) + 18 = 3.3\left( {2 + k} \right) \cr & \Leftrightarrow 2.3 + 18 = 9\left( {2 + k} \right) \cr & \Leftrightarrow 6 + 18 = 18 + 9k \cr & \Leftrightarrow 24 - 18 = 9k \cr & \Leftrightarrow 6 = 9k \cr & \Leftrightarrow k = {6 \over 9} = {2 \over 3} \cr} \)
Vậy khi thì phương trình có nghiệm x = 1
Câu 24 trang 8 Sách bài tập (SBT) Toán 8 tập 2
Tìm các giá trị của x sao cho hai biểu thức A và B cho sau đây có giá trị bằng nhau:
a. \(A = \left( {x - 3} \right)\left( {x + 4} \right) - 2\left( {3x - 2} \right)\) \(B = {\left( {x - 4} \right)^2}\)
b. \(A = \left( {x + 2} \right)\left( {x - 2} \right) + 3{x^2}\) \(B = {\left( {2x + 1} \right)^2} + 2x\)
c. \(A = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) - 2x\) \(B = x\left( {x - 1} \right)\left( {x + 1} \right)\)
d. \(A = {\left( {x + 1} \right)^3} - {\left( {x - 2} \right)^3}\) \(B = \left( {3x - 1} \right)\left( {3x + 1} \right)\)
Giải:
a. Ta có: A = B
\( \Leftrightarrow \left( {x - 3} \right)\left( {x + 4} \right) - 2\left( {3x - 2} \right) = {\left( {x - 4} \right)^2}\)
\(\eqalign{ & \Leftrightarrow {x^2} + 4x - 3x - 12 - 6x + 4 = {x^2} - 8x + 16 \cr & \Leftrightarrow {x^2} - {x^2} + 4x - 3x - 6x + 8x = 16 + 12 - 4 \cr & \Leftrightarrow 3x = 24 \Leftrightarrow x = 8 \cr} \)
Vậy với x = 8 thì A = B
b. Ta có : A = B
\( \Leftrightarrow \left( {x + 2} \right)\left( {x - 2} \right) + 3{x^2} = {\left( {2x + 1} \right)^2} + 2x\)
\(\eqalign{ & \Leftrightarrow {x^2} - 4 + 3{x^2} = 4{x^2} + 4x + 1 + 2x \cr & \Leftrightarrow {x^2} + 3{x^2} - 4{x^2} - 4x - 2x = 1 + 4 \cr & \Leftrightarrow - 6x = 5 \Leftrightarrow x = - {5 \over 6} \cr} \)
Vậy với thì A = B
c. Ta có: A = B
\( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) - 2x = x\left( {x - 1} \right)\left( {x + 1} \right)\)
\(\eqalign{ & \Leftrightarrow {x^3} - 1 - 2x = x\left( {{x^2} - 1} \right) \cr & \Leftrightarrow {x^3} - 1 - 2x = {x^3} - x \cr & \Leftrightarrow {x^3} - {x^3} - 2x + x = 1 \cr & \Leftrightarrow - x = 1 \Leftrightarrow x = - 1 \cr} \)
Vậy với x = -1 thì A = B
d. Ta có : A = B
\( \Leftrightarrow {\left( {x + 1} \right)^3} - {\left( {x - 2} \right)^3} = \left( {3x - 1} \right)\left( {3x + 1} \right)\)
\(\eqalign{ & \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 - {x^3} + 6{x^2} - 12x + 8 = 9{x^2} - 1 \cr & \Leftrightarrow {x^3} - {x^3} + 3{x^2} + 6{x^2} - 9{x^2} + 3x - 12x = - 1 - 1 - 8 \cr & \Leftrightarrow - 9x = - 10 \Leftrightarrow x = {{10} \over 9} \cr} \)
Vậy với \(x = {{10} \over 9}\) thì A = B.
Giaibaitap.me
Giải bài tập trang 9 bài 3 Phương trình được đưa về dạng ax + b = 0 Sách bài tập (SBT) Toán 8 tập 2. Câu 25: Giải các phương trình sau...
Giải bài tập trang 9, 10 bài 4 phương trình tích Sách bài tập (SBT) Toán 8 tập 2. Câu 26: Giải các phương trình sau...
Giải bài tập trang 10 bài 4 phương trình tích Sách bài tập (SBT) Toán 8 tập 2. Câu 29: Giải các phương trình sau...
Giải bài tập trang 10, 11 bài 4 phương trình tích Sách bài tập (SBT) Toán 8 tập 2. Câu 32: Cho phương trình...