Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 8

CHƯƠNG I. TỨ GIÁC

Giải bài tập trang 98, 99 bài 12 hình vuông Sách bài tập (SBT) Toán 8 tập 1. Câu 151: Cho hình vuông ABCD. Gọi E là một điểm nằm giữa C và D...

Câu 151 trang 98 Sách bài tập (SBT) Toán 8 tập 1

Cho hình vuông ABCD. Gọi E là một điểm nằm giữa C và D. Tia phân giác của góc DAE cắt CD ở F. Kẻ FH ⊥ AE (H ∈ AE), FH cắt BC ở G.

Tính số đo góc FAG.

Giải:                                                           

Xét hai tam giác vuông DAF và HAF:

\(\widehat {ADF} = \widehat {AHF} = {90^0}\)

\({\widehat A_1} = {\widehat A_2}\) (gt)

AF cạnh huyền

Do đó: ∆ DAF = ∆ HAF (cạnh huyền, góc nhọn)

⇒ DA = HA

DA = AB (gt)

Suy ra: HA = AB

Xét hai tam giác vuông HAG và BAG:

\(\widehat {AHG} = \widehat {ABG} = {90^0}\)

HA = BA (chứng minh trên)

AG cạnh huyền chung

Do đó: ∆ HAG = ∆ BAG (cạnh huyền, cạnh góc vuông)

\( \Rightarrow {\widehat A_3} = {\widehat A_4}\)nên AG là tia phân giác của \(\widehat {EAB}\)

\(\widehat {FAG} = {\widehat A_2} + {\widehat A_3} = {1 \over 2}\left( {\widehat {DAE} + \widehat {EAB}} \right) = {1 \over 2}{.90^0} = {45^0}\)

 


Câu 152 trang 99 Sách bài tập (SBT) Toán 8 tập 1

Cho hình vuông DEBC. Trên cạnh CD lấy điểm A, trên tia đối của tia DC lấy điểm K, trên tia đối tia ED lấy điểm M sao cho CA = DK = EM. Vẽ hình vuông DKIH (H thuộc cạnh DE). Chứng minh rằng ABMI là hình vuông.

Giải:                                                                 

Xét ∆ CAB và ∆ EMB :

CA = ME (gt)

\(\widehat C = \widehat E = {90^0}\)

CB = EB (tính chất hình vuông)

Do đó: ∆ CAB = ∆ EMB (c.g.c)

⇒ AB = MB (1)

AK = DK +DA

CD = CA + AD

mà CA = DK nên AK = CD

Xét ∆ CAB và ∆ KIA :

CA = KI (vì cùng bằng DK)

\(\widehat C = \widehat K = {90^0}\)

CB = AK (vì cùng bằng CD)

Do đó: ∆ CAB = ∆ KIA (c.g.c)

⇒ AB = AI (2)

DH = DK (vì KDHI là hình vuông)

EM = DK (gt)

⇒ DH + HE = HE + EM

hay DE = HM

Xét ∆ HIM và ∆ EMB :

HI = EM (vì cùng bằng DK)

\(\widehat H = \widehat E = {90^0}\)

HM = EB (vì cùng bằng DE)

Do đó: ∆ HIM = ∆ EMB (c.g.c)

⇒ IM = MB (3)

Từ (1), (2) và (3) suy ra: AB = BM = AI = IM

Tứ giác ABMI là hình thoi.

Mặt khác, ta có ∆ ACB = ∆ MEB (chứng minh trên)

\(\eqalign{  &  \Rightarrow \widehat {CBA} = \widehat {EBM}  \cr  & \widehat {CBA} + \widehat {ABE} = \widehat {CBE} = {90^0} \cr} \)

Suy ra: \(\widehat {EBM} + \widehat {ABE} = {90^0}\) hay \(\widehat {ABM} = {90^0}\)

Vậy : Tứ giác ABMI là hình vuông.

 


Câu 153 trang 99 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC. Vẽ ở ngoài tam giác các hình vuông ABDE, ACFH.

a. Chứng minh rằng EC = BH, EC ⊥ BH.

b. Gọi M, N theo thứ tự là tâm của các hình vuông ABDE, ACFH. Gọi I là trung điểm của BC. Tam giác MIN là tam giác gì ? Vì sao ?

Giải:                                                                         

a. Ta có: \(\widehat {BAH} = \widehat {BAC} + \widehat {CAH} = \widehat {BAC} + {90^0}\)

\(\widehat {EAC} = \widehat {BAC} + \widehat {BAE} = \widehat {BAC} + {90^0}\)

Suy ra: \(\widehat {BAH} = \widehat {EAC}\)

- Xét ∆ BAH và ∆ EAC:

BA = EA (vì ABDE là hình vuông)

\(\widehat {BAH} = \widehat {EAC}\) (chứng minh trên)

AH = AC (vì ACFH là hình vuông)

Do đó: ∆ BAH = ∆ EAC (c.g.c)

⇒ BH = EC

Gọi giao điểm của EC với AB và BH lần lượt là K và O.

\(\widehat {AEC} = \widehat {ABH}\) (vì ∆ BAH = ∆ EAC) (1)

hay \(\widehat {AEK} = \widehat {OBK}\)

- Trong ∆ AEK ta có: \(\widehat {EAK} = {90^0}\)

\( \Rightarrow \widehat {AEK} + \widehat {AKE} = {90^0}\) (2)

\(\widehat {AKE} = \widehat {OKB}\) (đối đỉnh) (3)

Từ (1) và (2) suy ra: \(\widehat {OKB} + \widehat {OBK} = {90^0}\)

- Trong ∆ BOK ta có: \(\widehat {BOK} + \widehat {OKB} + \widehat {OBK} = {180^0}\)

\( \Rightarrow \widehat {BOK} = {180^0} - \left( {\widehat {OKB} + \widehat {OBK}} \right) = {180^0} - {90^0} = {90^0}\)

Suy ra: EC ⊥ BH

b. Trong ∆ EBC ta có:

M là trung điểm của EB (tính chất hình vuông)

I là trung điểm của BC (gt)

nên MI là đường trung bình của tam giác EBC

⇒ MI = \({1 \over 2}\)EC và MI // EC (tính chất đường trung bình của tam giác)

- Trong ∆ BCH ta có:

I là trung điểm của BC (gt)

N là trung điểm của CH (tính chất hình vuông)

nên NI là đường trung bình của ∆ BCH

⇒ NI = \({1 \over 2}\)BH và NI // BH (tính chất đường trung bình của tam giác)

BH = CE (chứng minh trên)

Suy ra: MI = NI nên ∆ INM cân tại I

MI // EC (chứng minh trên)

EC ⊥ BH (chứng minh trên)

Suy ra: MI ⊥ BH

NI // BH (chứng minh trên)

Suy ra: MI ⊥ NI hay \(\widehat {MIN} = {90^0}\)

Vậy ∆ IMN vuông cân tại I.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác