Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3 trên 8 phiếu

Giải sách bài tập Toán 8

CHƯƠNG I. TỨ GIÁC

Giải bài tập trang 99, 100 bài ôn tập chương I - tứ giác Sách bài tập (SBT) Toán 8 tập 1. Câu 157: Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABCD để EFGH là...

Câu 157 trang 99 Sách bài tập (SBT) Toán 8 tập 1

Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABCD để EFGH là:

a. Hình chữ nhật

b. Hình thoi

c. Hình vuông

Giải:                                                          

Trong ∆ ABC ta có EF là đường trung bình nên EF // AC và EF = \({1 \over 2}\)AC (1)

Trong ∆ ADC ta có HG là đường trung bình nên HG // AC và HG = \({1 \over 2}\)AC (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Vậy tứ giác EFGH là hình bình hành

a. Tứ giác EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AC ⊥ BD

b. Tứ giác EFGH là hình thoi ⇔ EH = EF ⇔ AC = BD

c. Tứ giác EFGH là hình vuông ⇔ AC ⊥ BD và AC = BD

 


Câu 158 trang 100 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC.

a. Tứ giác AEDF là hình gì ? Vì sao ?

b. Các tứ giác ADBM, ADCN là hình gì ? Vì sao ?

c. Chứng minh rằng M đối xứng với N qua A

d. Tam giác vuông ABC có điều kiện gì thì tứ giác AEDF là hình vuông ?

Giải:                                                                           

a. Điểm M và điểm D đối xứng qua trục AB

⇒ AB là đường trung trực của đoạn thẳng MD

⇒ AB ⊥ DM

⇒ \(\widehat {AED} = {90^0}\)

Điểm D và điểm N đối xứng nhau qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN

⇒ AC ⊥ DN \( \Rightarrow \widehat {AFD} = {90^0}\)

\(\widehat {EAF} = {90^0}\) (gt)

Vậy tứ giác AEDF là hình chữ nhật (vì có ba góc vuông)

b. Tứ giác AEDF là hình chữ nhật ⇒ DE // AC; DF // AB

Trong ∆ ABC ta có: DB = DC (gt)

DE // AC

Suy ra: AE = EB (tính chất đường trung bình tam giác); DF// AB

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM : AE = EB (chứng minh trên)

ED = EM (vì AB là trung trực DM)

Suy ra: Tứ giác ADBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi ( vì có hai đường chéo vuông góc)

Xét tứ giác ADCN:

AF = FC (chứng minh trên)

DF = FN (vì AC là đường trung trực DN)

Suy ra: Tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo vuông góc)

c. Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD

hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN

hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trung với AN hay M, A, N thẳng hàng

Và AM = AN  nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng với nhau qua điểm A

d. Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = \({1 \over 2}\)AB ; AF =\({1 \over 2}\)AC

nên AE = AF  AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.

 


Câu 159 trang 100 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, gọi E là điểm đối xứng với H qua AC.

a. Chứng minh rằng D đối xứng với E qua A

b. Tam giác DHE là tam giác gì ? Vì sao ?

c. Tứ giác BDEC là hình gì ? Vì sao ?

d. Chứng minh rằng BC = BD + CE.

Giải:                                                                        

a. Điểm D đối xứng điểm H qua trục AB

⇒ AB là đường trung trực của HD

⇒ AH = AD (tính chất đường trung trực) ⇒ ∆ ADH cân tại A

Suy ra: AB là tia phân giác của \(\widehat {DAH} \Rightarrow \widehat {DAB} = {\widehat A_1}\)

Điểm H và điểm E đối xứng qua trục AC

⇒ AC là đường trung trực của HE

⇒ AH = AE (tính chất đường trung trực) ⇒ ∆ AHE cân tại A

Suy ra: AC là đường phân giác của \(\widehat {HAE} \Rightarrow {\widehat A_2} = \widehat {EAC}\)

\(\widehat {DAE} = \widehat {DAH} + \widehat {HAE} = 2\left( {{{\widehat A}_1} + {{\widehat A}_2}} \right) = {2.90^0} = {180^0}\)

 D, A, E thẳng hàng

AD = AE (vì cùng bằng AH)

nên điểm A là trung điểm của đoạn DE

Vậy điểm D đối xứng với điểm E qua điểm A.

b) Tam giác DHE có HA là trung tuyến và \(AH = {1 \over 2}DE\)
nên tam giác DHE vuông tại H.


c) Xét \(\Delta ADB\) và \( \Delta AHB\) có:

   +) AB chung

   +) BD = BH ( vì AB là trung trực của DH)

   +) AD = AH (vì AB là trung trực của DH)

\(\Rightarrow \Delta ADB = \Delta AHB\;(c.c.c)\)

\( \Rightarrow \widehat {AHB} = \widehat {ADB}=90^0\) (hai góc tương ứng)

Xét \(\Delta AEC\) và \( \Delta AHC\) có:

   +) AC chung

   +) EC = HC ( vì AC là trung trực của EH)

   +) AE = AH (vì AC là trung trực của EH)

\(\Rightarrow \Delta AEC = \Delta AHC\;(c.c.c)\)

\( \Rightarrow \widehat {AHC} = \widehat {AEC}=90^0\) (hai góc tương ứng)

Suy ra BD//CE (vì cùng vuông góc với DE)
Do đó tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE nên BDEC là hình thang vuông.

d) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
Cộng vế với vế của (5) và (6) ta có BD+CE=BH+CH hay BD+CE=BC

 


Câu 160 trang 100 Sách bài tập (SBT) Toán 8 tập 1

Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, AC, DC, DB. Tìm điều kiện của tứ giác ABCD để EFGH là:

a. Hình chữ nhật

b. Hình thoi

c. Hình vuông

Giải:

Xét tam giác ABC:

Ta có: EB = EA, FA = FC (gt)

Nên EF // BC, EF = \({1 \over 2}\)  BC.

Xét tam giác BDC có

HB = HD, GD = GC (gt)

Nên HG // BC, HG =  \({1 \over 2}\)  BC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC

b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC

c)  EFGH là hình thoi ⇔ AD ⊥ BC và AD = BC

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác