Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 8

CHƯƠNG I. TỨ GIÁC

Giải bài tập trang 92 bài 8 đối xứng tâm Sách bài tập (SBT) Toán 8 tập 1. Câu 100: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo...

Câu 100 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O, vẽ đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.

Giải:                                                                           

Xét ∆ OAE và ∆ OCF:

OA = OC (tính chất hình bình hành)

\(\widehat {AOE} = \widehat {COF}\) (đối đỉnh)

\(\widehat {OAE} = \widehat {OCF}\) (so le trong)

Do đó: ∆ OAE = ∆ OCF (g.c.g)

⇒ OE = OF (1)

Xét ∆ OAG và ∆ OCH:

OA = OC (tính chất hình bình hành)

\(\widehat {AOG} = \widehat {COH}\) (đối đỉnh)

\(\widehat {OAG} = \widehat {OCH}\) (so le trong)

Do đó: ∆ OAG = ∆ OCH (g.c.g)

⇒ OG = OH (2)

Từ (1) và (2) suy ra: Tứ giác EGFH là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

 


Câu 101 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.

a. Chứng minh rằng OB = OC

b. Tính số đo góc xOy để B đối xứng với C qua O.

Giải:                                                                      

a. Vì B đối xứng với A qua trục Ox nên Ox là đường trung trực của đoạn AB.

⇒ OA = OB (tính chất đường trung trực) (1)

Vì C đối xứng với A qua trục Oy nên Oy là đường trung trực của đoạn AC.

⇒ OA = OC (tính chất đường trung trực) (2)

Từ (1) và (2) suy ra: OB = OC.

b. Ta có: OB = OC do đó điểm B đối xứng với điểm C qua tâm O cần thêm điều kiện B, O, C thẳng hàng.

∆ OAB cân tại O có Ox là đường trung trực của AB nên Ox cũng là đường phân giác của \(\widehat {AOB} \Rightarrow {\widehat O_1} = {\widehat O_3}\)

∆ OAC cân tại O có Oy là đường trung trực của AC nên Oy cũng là đường phân giác của \(\widehat {AOC} \Rightarrow {\widehat O_2} = {\widehat O_4}\)

B, O, C thẳng hàng \( \Leftrightarrow {\widehat O_1} = {\widehat O_2} + {\widehat O_3} + {\widehat O_4} = {180^0}\)

\(\eqalign{&  \Leftrightarrow 2{\widehat O_1} + 2{\widehat O_2} = {180^0}  \cr&  \Leftrightarrow {\widehat O_1} + {\widehat O_2} = {90^0}  \cr&  \Leftrightarrow \widehat {xOy} = {90^0} \cr} \)

Vậy \(\widehat {xOy} = {90^0}\) thì B đối xứng với C qua tâm O.

 


Câu 102 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC có trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M. Tính số đo góc ABK, ACK.

Giải:                                                                       

Ta có K là điểm đối xứng của H qua tâm M nên MK = MH

Xét tứ giác BHCK ta có:

BM = MC (gt)

MK = MH (chứng minh trên)

Suy ra: Tứ giác BHCK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Suy ra: KB // CH, KC // BH

              CH ⊥ AB (gt)

Suy ra: KB ⊥ AB nên \(\widehat {KBA} = {90^0}\)

BH ⊥ AC (gt)

Suy ra : CK ⊥ AC nên \(\widehat {KCA} = {90^0}\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác