Câu 1 trang 23 Sách bài tập (SBT) Toán 8 tập 1
Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau:
a. \({{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)
b. \({{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)
c. \({{3 - x} \over {3 + x}} = {{{x^2} - 6x + 9} \over {9 - {x^2}}}\)
d. \({{{x^3} - 4x} \over {10 - 5x}} = {{ - {x^2} - 2x} \over 5}\)
Giải:
a. \({x^2}{y^3}.35xy = 35{x^3}{y^4};5.7{x^3}{y^4} = 35{x^3}{y^4}\)
\( \Rightarrow {x^2}{y^3}.35xy = 5.7{x^3}{y^4}\). Vậy \({{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)
b. \({x^2}\left( {x + 2} \right).\left( {x + 2} \right) = {x^2}{\left( {x + 2} \right)^2};x{\left( {x + 2} \right)^2}.x = {x^2}{\left( {x + 2} \right)^2}\)
\( \Rightarrow {x^2}\left( {x + 2} \right).\left( {x + 2} \right) = x{\left( {x + 2} \right)^2}x\).
Vậy \({{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)
c. \(\left( {3 - x} \right)\left( {9 - {x^2}} \right) = 27 - 3{x^2} - 9x + {x^3}\)
\(\left( {3 + x} \right)\left( {{x^2} - 6x + 9} \right) = 3{x^2} - 18x + 27 + {x^3} - 6{x^2} + 9x = 27 - 3{x^2} - 9x + {x^3}\)
\( \Rightarrow \left( {3 - x} \right)\left( {9 - {x^2}} \right) = \left( {3 + x} \right)\left( {{x^2} - 6x + 9} \right)\).
Vậy \({{3 - x} \over {3 + x}} = {{{x^2} - 6x + 9} \over {9 - {x^2}}}\)
d. \(\left( {{x^3} - 4x} \right).5 = 5{x^3} - 20x;\left( {10 - 5x} \right)\left( { - {x^2} - 2x} \right) = - 10{x^2} - 20x + 5{x^3} + 10{x^2} = 5{x^3} - 20x\)
\( \Rightarrow \left( {{x^3} - 4x} \right).5 = \left( {10 - 5x} \right)\left( { - {x^2} - 2x} \right)\)
Vậy \({{{x^3} - 4x} \over {10 - 5x}} = {{ - {x^2} - 2x} \over 5}\)
Câu 2 trang 24 Sách bài tập (SBT) Toán 8 tập 1
Dùng định nghĩa hai phân thức bằng nhau, hãy tìm đa thức A trong mỗi đẳng thức sau:
a. \({A \over {2x - 1}} = {{6{x^2} + 3x} \over {4{x^2} - 1}}\)
b. \({{4{x^2} - 3x - 7} \over A} = {{4x - 7} \over {2x + 3}}\)
c. \({{4{x^2} - 7x + 3} \over {{x^2} - 1}} = {A \over {{x^2} + 2x + 1}}\)
d. \({{{x^2} - 2x} \over {2{x^2} - 3x - 2}} = {{{x^2} + 2x} \over A}\)
Giải:
a. \({A \over {2x - 1}} = {{6{x^2} + 3x} \over {4{x^2} - 1}}\)
\( \Rightarrow A\left( {4{x^2} - 1} \right) = \left( {2x - 1} \right).\left( {6{x^2} + 3x} \right)\)
\( \Rightarrow A\left( {2x - 1} \right)\left( {2x + 1} \right) = \left( {2x - 1} \right).3x\left( {2x + 1} \right)\)
\( \Rightarrow A = 3x\)
Ta có: \({{3x} \over {2x - 1}} = {{6{x^2} + 3x} \over {4{x^2} - 1}}\)
b. \({{4{x^2} - 3x - 7} \over A} = {{4x - 7} \over {2x + 3}}\)
\(\eqalign{ & \Rightarrow \left( {4{x^2} - 3x - 7} \right)\left( {2x + 3} \right) = A\left( {4x - 7} \right) \cr & \Rightarrow \left( {4{x^2} + 4x - 7x - 7} \right)\left( {2x + 3} \right) = A\left( {4x - 7} \right) \cr & \Rightarrow \left[ {4x\left( {x + 1} \right) - 7\left( {x + 1} \right)} \right]\left( {2x + 3} \right) = A\left( {4x - 7} \right) \cr & \Rightarrow \left( {x - 1} \right)\left( {4x - 7} \right)\left( {2x + 3} \right) = A\left( {4x - 7} \right) \cr & \Rightarrow A = \left( {x + 1} \right)\left( {2x + 3} \right) = 2{x^2} + 3x + 2x + 3 = 2{x^2} + 5x + 3 \cr} \)
Ta có: \({{4{x^2} - 3x - 7} \over {2{x^2} + 5x + 3}} = {{4x - 7} \over {2x + 3}}\)
c. \({{4{x^2} - 7x + 3} \over {{x^2} - 1}} = {A \over {{x^2} + 2x + 1}}\)
\(\eqalign{ & \Rightarrow \left( {4{x^2} - 7x + 3} \right).\left( {{x^2} + 2x + 1} \right) = A.\left( {{x^2} - 1} \right)\left( {{\pi \over 2} - \theta } \right) \cr & \Rightarrow \left( {4{x^2} - 4x - 3x + 3} \right).{\left( {x + 1} \right)^2} = A\left( {x + 1} \right)\left( {x - 1} \right) \cr & \Rightarrow \left[ {4x\left( {x - 1} \right) - 3\left( {x - 1} \right)} \right].{\left( {x + 1} \right)^2} = A\left( {x + 1} \right)\left( {x - 1} \right) \cr & \Rightarrow \left( {x - 1} \right)\left( {4x - 3} \right){\left( {x + 1} \right)^2} = A\left( {x + 1} \right)\left( {x - 1} \right) \cr & \Rightarrow A = \left( {4x - 3} \right)\left( {x + 1} \right) = 4{x^2} + 4x - 3x - 3 = 4{x^2} + x - 3 \cr} \)
Ta có: \({{4{x^2} - 7x + 3} \over {{x^2} - 1}} = {{4{x^2} + x - 3} \over {{x^2} + 2x + 1}}\)
d. \({{{x^2} - 2x} \over {2{x^2} - 3x - 2}} = {{{x^2} + 2x} \over A}\)
\(\eqalign{ & \Rightarrow \left( {{x^2} - 2x} \right).A = \left( {2{x^2} - 3x - 2} \right)\left( {{x^2} + 2x} \right) \cr & \Rightarrow x\left( {x - 2} \right).A = \left( {2{x^2} - 4x + x - 2} \right).x\left( {x + 2} \right) \cr & \Rightarrow x\left( {x - 2} \right).A = \left[ {2x\left( {x - 2} \right) + \left( {x - 2} \right)} \right].x\left( {x + 2} \right) \cr & \Rightarrow x\left( {x - 2} \right).A = \left( {2x + 1} \right)\left( {x - 2} \right).x.\left( {x + 2} \right) \cr & \Rightarrow A = \left( {2x + 1} \right)\left( {x + 2} \right) = 2{x^2} + 4x + x + 2 = 2{x^2} + 5x + 2 \cr} \)
Ta có : \({{{x^2} - 2x} \over {2{x^2} - 3x - 2}} = {{{x^2} + 2x} \over {{x^2} + 2x + 1}}\)
Câu 3 trang 24 Sách bài tập (SBT) Toán 8 tập 1
Bạn Lan viết các đẳng thức sau và đố các bạn trong nhóm học tập tìm ra chỗ sai. Em hãy sửa chỗ sai cho đúng.
a. \({{5x + 3} \over {x - 2}} = {{5{x^2} + 13x + 6} \over {{x^2} - 4}}\)
b. \({{x + 1} \over {x + 3}} = {{{x^2} + 3} \over {{x^2} + 6x + 9}}\)
c. \({{{x^2} - 2} \over {{x^2} - 1}} = {{x + 2} \over {x + 1}}\)
d. \({{2{x^2} - 5x + 3} \over {{x^2} + 3x - 4}} = {{2{x^2} - x - 3} \over {{x^2} + 5x + 4}}\)
Giải:
a. \(\left( {5x + 3} \right)\left( {{x^2} - 4} \right) = 5{x^3} - 20x + 3{x^3} - 12\)
\(\left( {x - 2} \right)\left( {5{x^2} + 13x + 6} \right) = 5{x^3} + 13{x^2} + 6x - 10{x^2} - 26x - 12 = 5{x^3} - 20x + 3{x^2} - 12\)
Đẳng thức đúng.
b. \(\left( {x + 1} \right)\left( {{x^2} + 6x + 9} \right) = {x^3} + 6{x^2} + 9x + {x^2} + 6x + 9 = {x^3} + 7{x^2} + 15x + 9\)
\(\left( {x + 3} \right)\left( {{x^2} + 3} \right) = {x^3} + 3x + 3{x^2} + 9 \Rightarrow \left( {x + 1} \right)\left( {{x^2} + 6x + 9} \right) \ne \left( {x + 3} \right)\left( {{x^2} + 3} \right)\)
Đẳng thức sai
\({{x + 1} \over {x + 3}} \ne {{{x^2} + 3} \over {{x^2} + 6x + 9}}\).
Sửa lại \({{x + 1} \over {x + 3}} = {{{x^2} + 4x + 3} \over {{x^2} + 6x + 9}}\)
c. \(\left( {{x^2} - 2} \right)\left( {x + 1} \right) = {x^3} + {x^2} - 2x - 2\)
\(\left( {{x^2} - 1} \right)\left( {x + 2} \right) = {x^3} + 2{x^2} - x - 2\)
\(\left( {{x^2} - 2} \right)\left( {x + 1} \right) \ne \left( {{x^2} - 1} \right)\left( {x + 2} \right)\)
Đẳng thức sai
\({{{x^2} - 2} \over {{x^2} - 1}} = {{x + 2} \over {x + 1}}\).
Sửa lại \({{{x^2} + x - 2} \over {{x^2} - 1}} = {{x + 2} \over {x + 1}}\)
d. \(\left( {2{x^2} - 5x + 3} \right)\left( {{x^2} + 5x + 4} \right)\)
\( = 2{x^4} + 10{x^3} + 8{x^2} - 5{x^3} - 25{x^2} - 20x + 3{x^2} + 15x + 12\)
\(\eqalign{ & = 2{x^4} + 5{x^3} - 14{x^2} - 5x + 12 \cr & \left( {{x^2} + 3x - 4} \right)\left( {2{x^2} - x - 3} \right) = 2{x^4} - {x^3} - 3{x^2} + 6{x^3} - 3{x^2} - 9x - 8{x^2} + 4x + 12 \cr & = 2{x^4} + 5{x^3} - 14{x^2} - 5x + 12 \cr & \Rightarrow \left( {2{x^2} - 5x + 3} \right)\left( {{x^2} + 5x + 4} \right) = \left( {{x^2} + 3x - 4} \right)\left( {2{x^2} - x - 3} \right) \cr} \)
Đẳng thức đúng
Câu 1.1 trang 24 Sách bài tập (SBT) Toán 8 tập 1
Tìm đa thức P để \({{x - 3} \over {{x^2} + x + 1}} = {P \over {{x^3} - 1}}\) .
Phương án nào sau đây là đúng ?
A. \(P = {x^2} + 3\)
B. \(P = {x^2} - 4x + 3\)
C. \(P = x + 3\)
D. \(P = {x^2} - x - 3\)
Giải:
Chọn B. \(P = {x^2} - 4x + 3\)
Câu 1.2 trang 24 Sách bài tập (SBT) Toán 8 tập 1
Trong mỗi trường hợp sau hãy tìm hai đa thức P và Q thỏa mãn đẳng thức :
a. \({{\left( {x + 2} \right)P} \over {x - 2}} = {{\left( {x - 1} \right)Q} \over {{x^2} - 4}}\)
b. \({{\left( {x + 2} \right)P} \over {{x^2} - 1}} = {{\left( {x - 2} \right)Q} \over {{x^2} - 2x + 1}}\)
Giải:
a. \({{\left( {x + 2} \right)P} \over {x - 2}} = {{\left( {x - 1} \right)Q} \over {{x^2} - 4}}\)
P \( = x - 1\) ;Q \( = {\left( {x + 2} \right)^2} = {x^2} + 4x + 4\)
b. \({{\left( {x + 2} \right)P} \over {{x^2} - 1}} = {{\left( {x - 2} \right)Q} \over {{x^2} - 2x + 1}}\)
P \( = \left( {x - 2} \right)\left( {x + 1} \right) = {x^2} - x - 2\)
Q \( = \left( {x + 2} \right)\left( {x - 1} \right) = {x^2} + x - 2\)
Câu 1.3 trang 24 Sách bài tập (SBT) Toán 8 tập 1
Cho hai phân thức \({P \over Q}\) và\({R \over S}\).
Chứng minh rằng :
a. Nếu \({P \over Q} = {R \over S}\) thì \({{P + Q} \over Q} = {{R + S} \over S}\)
b. Nếu và P ≠ Q thì R ≠ S và
Giải:
a. \({P \over Q} = {R \over S}\) \( \Rightarrow PS = QR\) (1). Vì \({P \over Q},{R \over S}\) là phân thức
⇒ Q, S khác không. Cộng vào hai vế của đẳng thức (1) với Q S
P S + Q S = Q R + Q S ⇒ (P + Q). S = Q (R + S)
⇒\({{P + Q} \over Q} = {{R + S} \over S}\)
b. \({P \over Q} = {R \over S}\)⇒ P S = Q R (1) và P ≠ Q, R ≠ S
Trừ từng vế đẳng thức (1) với PR : P S – P R = Q R – P R
⇒ P (S – R) = R (Q – P) ⇒ \({P \over {Q - P}} = {R \over {S - R}}\)
Giaibaitap.me
Giải bài tập trang 25 bài 2 tính chất cơ bản của phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 4: Dùng tính chất cơ bản của phân thức, hãy điền một đa thức thích hợp vào các chỗ trống trong mỗi đẳng thức sau...
Giải bài tập trang 25, 26 bài 2 tính chất cơ bản của phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 8: Chứng minh rằng ...
Giải bài tập trang 26, 27 bài 3 rút gọn phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 9: Rút gọn các phân thức sau...
Giải bài tập trang 27 bài 3 rút gọn phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 3.1: Rút gọn phân thức...