Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 8

CHƯƠNG II. PHÂN THỨC ĐẠI SỐ

Giải bài tập trang 32 bài 7 phép nhân các phân thức đại số Sách bài tập (SBT) Toán 8 tập 1. Câu 29: Làm tính nhân phân thức ...

Câu 29 trang 32 Sách bài tập (SBT) Toán 8 tập 1

Làm tính nhân phân thức :

a. \({{30{x^3}} \over {11{y^2}}}.{{121{y^5}} \over {25x}}\)

b. \({{24{y^5}} \over {7{x^2}}}.\left( { - {{21x} \over {12{y^3}}}} \right)\)

c. \(\left( { - {{18{y^3}} \over {25{x^4}}}} \right).\left( { - {{15{x^2}} \over {9{y^3}}}} \right)\)

d. \({{4x + 8} \over {{{\left( {x - 10} \right)}^3}}}.{{2x - 20} \over {{{\left( {x + 2} \right)}^2}}}\)

e. \({{2{x^2} - 20x + 50} \over {3x + 3}}.{{{x^2} - 1} \over {4{{\left( {x - 5} \right)}^3}}}\)

Giải:

a. \({{30{x^3}} \over {11{y^2}}}.{{121{y^5}} \over {25x}}\)\( = {{30{x^3}.121{y^5}} \over {11{y^2}.25x}} = {{6{x^2}.11{y^3}} \over {1.5}} = {{66{x^2}{y^3}} \over 5}\)

b. \({{24{y^5}} \over {7{x^2}}}.\left( { - {{21x} \over {12{y^3}}}} \right)\) \( = {{24{y^5}.\left( { - 21x} \right)} \over {7{x^2}.12{y^3}}} = {{2{y^2}.\left( { - 3} \right)} \over x} =  - {{6{y^2}} \over x}\)

c. \(\left( { - {{18{y^3}} \over {25{x^4}}}} \right).\left( { - {{15{x^2}} \over {9{y^3}}}} \right)\) \( = {{\left( { - 18{y^3}} \right).\left( { - 15{x^2}} \right)} \over {25{x^4}.9{y^3}}} = {{ - 2.\left( { - 3} \right)} \over {5{x^2}.1}} = {6 \over {5{x^2}}}\)

d. \({{4x + 8} \over {{{\left( {x - 10} \right)}^3}}}.{{2x - 20} \over {{{\left( {x + 2} \right)}^2}}}\)\( = {{4\left( {x + 2} \right).2\left( {x - 10} \right)} \over {{{\left( {x - 10} \right)}^3}{{\left( {x + 2} \right)}^2}}} = {8 \over {{{\left( {x - 10} \right)}^2}\left( {x + 2} \right)}}\)

e. \({{2{x^2} - 20x + 50} \over {3x + 3}}.{{{x^2} - 1} \over {4{{\left( {x - 5} \right)}^3}}}\)\( = {{2\left( {{x^2} - 10x + 25} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {3\left( {x + 1} \right).4{{\left( {x - 5} \right)}^3}}}\)

\( = {{{{\left( {x - 5} \right)}^2}\left( {x - 1} \right)} \over {6{{\left( {x - 5} \right)}^3}}} = {{x - 1} \over {6\left( {x - 5} \right)}}\)


Câu 30 trang 32 Sách bài tập (SBT) Toán 8 tập 1

Rút gọn biểu thức (chú ý dùng quy tắc đổi dấu để thấy nhân tử chung) :

a. \({{x + 3} \over {{x^2} - 4}}.{{8 - 12x + 6{x^2} - {x^3}} \over {9x + 27}}\)

b. \({{6x - 3} \over {5{x^2} + x}}.{{25{x^2} + 10x + 1} \over {1 - 8{x^3}}}\)

c. \({{3{x^2} - x} \over {{x^2} - 1}}.{{1 - {x^4}} \over {{{\left( {1 - 3x} \right)}^3}}}\)

Giải:

a. \({{x + 3} \over {{x^2} - 4}}.{{8 - 12x + 6{x^2} - {x^3}} \over {9x + 27}}\)\({{\left( {x + 3} \right)\left( {8 - 12x + 6{x^2} - {x^3}} \right)} \over {\left( {x + 2} \right)\left( {x - 2} \right).9\left( {x + 3} \right)}}\)

\( = {{{2^3} - {{3.2}^2}.x + 3.2{x^2} - {x^3}} \over {9\left( {x + 2} \right)\left( {x - 2} \right)}} = {{{{\left( {2 - x} \right)}^3}} \over { - 9\left( {x + 2} \right)\left( {2 - x} \right)}} =  - {{{{\left( {2 - x} \right)}^2}} \over {9\left( {x + 2} \right)}}\)

b. \({{6x - 3} \over {5{x^2} + x}}.{{25{x^2} + 10x + 1} \over {1 - 8{x^3}}}\)\( = {{3\left( {2x - 1} \right){{\left( {5x + 1} \right)}^2}} \over {x\left( {5x + 1} \right)\left[ {1 - {{\left( {2x} \right)}^2}} \right]}} = {{3\left( {2x - 1} \right)\left( {5x + 1} \right)} \over {x\left( {1 - 2x} \right)\left( {1 + 2x + 4{x^2}} \right)}}\)

\( =  - {{3\left( {2x - 1} \right)\left( {5x + 1} \right)} \over {x\left( {2x - 1} \right)\left( {1 + 2x + 4{x^2}} \right)}} =  - {{3\left( {5x + 1} \right)} \over {x\left( {1 + 2x + 4{x^2}} \right)}}\)

c. \({{3{x^2} - x} \over {{x^2} - 1}}.{{1 - {x^4}} \over {{{\left( {1 - 3x} \right)}^3}}}\)\( = {{x\left( {3x - 1} \right)\left( {1 - {x^4}} \right)} \over {\left( {{x^2} - 1} \right){{\left( {1 - 3x} \right)}^3}}} = {{x\left( {3x - 1} \right)\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)} \over {\left( {{x^2} - 1} \right){{\left( {3x - 1} \right)}^3}}}\)

\( = {{x\left( {{x^2} + 1} \right)} \over {{{\left( {3x - 1} \right)}^2}}}\)


Câu 31 trang 32 Sách bài tập (SBT) Toán 8 tập 1

Phân tích các tử thức và các mẫu thức (nếu cần thì dùng phương pháp thêm và bớt cùng một số hạng hoặc tách một số hạng thành hai số hạng) rồi rút gọn biểu thức :

a. \({{x - 2} \over {x + 1}}.{{{x^2} - 2x - 3} \over {{x^2} - 5x + 6}}\)

b. \({{x + 1} \over {{x^2} - 2x - 8}}.{{4 - x} \over {{x^2} + x}}\)

c. \({{x + 2} \over {4x + 24}}.{{{x^2} - 36} \over {{x^2} + x - 2}}\)

Giải:

a. \({{x - 2} \over {x + 1}}.{{{x^2} - 2x - 3} \over {{x^2} - 5x + 6}}\)\( = {{\left( {x - 2} \right)\left( {{x^2} - 2x - 3} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - 5x + 6} \right)}} = {{\left( {x - 2} \right)\left( {{x^2} - 3x + x - 3} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - 2x - 3x + 6} \right)}}\)

\( = {{\left( {x - 2} \right)\left[ {x\left( {x - 3} \right) + \left( {x - 3} \right)} \right]} \over {\left( {x + 1} \right)\left[ {x\left( {x - 2} \right) - 3\left( {x - 2} \right)} \right]}} = {{\left( {x - 2} \right)\left( {x - 3} \right)\left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = 1\)

b. \({{x + 1} \over {{x^2} - 2x - 8}}.{{4 - x} \over {{x^2} + x}}\)\( = {{\left( {x + 1} \right)\left( {4 - x} \right)} \over {\left( {{x^2} - 2x - 8} \right)x\left( {x + 1} \right)}} = {{4 - x} \over {\left( {{x^2} - 4x + 2x - 8} \right)x}}\)

\( = {{4 - x} \over {\left[ {x\left( {x - 4} \right) + 2\left( {x - 4} \right)} \right]x}} = {{4 - x} \over {x\left( {x - 4} \right)\left( {x + 2} \right)}} =  - {{x - 4} \over {x\left( {x - 4} \right)\left( {x + 2} \right)}} =  - {1 \over {x\left( {x + 2} \right)}}\)

c. \({{x + 2} \over {4x + 24}}.{{{x^2} - 36} \over {{x^2} + x - 2}}\)\({{\left( {x + 2} \right)\left( {x + 6} \right)\left( {x - 6} \right)} \over {4\left( {x + 6} \right)\left( {{x^2} + x - 2} \right)}} = {{\left( {x + 2} \right)\left( {x - 6} \right)} \over {4\left( {{x^2} + 2x - x - 2} \right)}}\)

\( = {{\left( {x + 2} \right)\left( {x - 6} \right)} \over {4\left[ {x\left( {x + 2} \right) - \left( {x - 2} \right)} \right]}} = {{\left( {x + 2} \right)\left( {x - 6} \right)} \over {4\left( {x + 2} \right)\left( {x - 1} \right)}} = {{x - 6} \over {4\left( {x - 1} \right)}}\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác