Bài 5.4 trang 76 Sách bài tập (SBT) Đại số và giải tích 11
Kết quả (b,c)của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai \({x^2} + bx + c = 0\)
Tính xác suất để
a) Phương trình vô nghiệm;
b) Phương trình có nghiệm kép;
c) Phương trình có nghiệm.
Giải:
Không gian mẫu \(\Omega = \left\{ {\left( {b,c} \right):1 \le b,c \le 6} \right\}\). Kí hiệu A, B, C là các biến cố cần tìm xác suấtứng với các câu a), b), c). Ta có \(\Delta = {b^2} - 4c\)
a)
\(\eqalign{
& A = \left\{ {\left( {b,c} \right) \in \Omega |{b^2} - 4c < 0} \right\} \cr
& {\rm{ }} = \left\{ \matrix{
\left( {1,1} \right),\left( {1,2} \right),...,\left( {1,6} \right),\left( {2,2} \right),...,\left( {2,6} \right), \hfill \cr
\left( {3,3} \right),\left( {3,4} \right),\left( {3,5} \right),\left( {3,6} \right),\left( {4,5} \right),\left( {4,6} \right) \hfill \cr} \right\}. \cr
& n\left( A \right) = 6 + 5 + 4 + 2 = 17,{\rm{ P}}\left( A \right) = {{17} \over {36}}. \cr} \)
b)
\(\eqalign{
& B = \left\{ {\left( {b,c} \right) \in \Omega |{b^2} - 4c = 0} \right\} \cr
& {\rm{ }} = \left\{ {\left( {2,1} \right),\left( {4,4} \right)} \right\}. \cr} \)
Từ đó \(P\left( B \right) = {2 \over {36}} = {1 \over {18}}\)
c)
\(C = \overline A \). Vậy \(P\left( C \right) = 1 - {{17} \over {36}} = {{19} \over {36}}\)
Bài 5.5 trang 76 Sách bài tập (SBT) Đại số và giải tích 11
Một hộp chứa 10 quả cầu được đánh số từ 1 đến 10, đồng thời các quả từ 1 đến 6 được sơn màu đỏ. Lấy ngẫu nhiễn một quả. Kí hiệu A là biến cố: “Quả lấy ra màu đỏ”, B là biến cố: “Quả lấy ra ghi số chẵn”. Hỏi A và B có độc lập không?
Giải:
Kí hiệu A là biến cố: “Quả lấy ra màuđỏ”;
B là biến cố: “Quả lấy ra ghi số chẵn”.
Không gian mẫu
\(\eqalign{
& \Omega = \left\{ {1,2,...,10} \right\}; \cr
& A = \left\{ {1,2,3,4,5,6} \right\}. \cr}\)
Từ đó: \(P\left( A \right) = {6 \over {10}} = {3 \over 5}\)
Tiếp theo, \(B = \left\{ {2,4,6,8,10} \right\}\) và \(A \cap B = \left\{ {2,4,6} \right\}\).
Do đó: \(P\left( B \right) = {5 \over {10}} = {1 \over 2},{\rm{P}}\left( {AB} \right) = {3 \over {10}}\)
Ta thấy \(P\left( {AB} \right) = {3 \over {10}} = {3 \over 5}.{1 \over 2} = P\left( A \right)P\left( B \right)\). Vậy A và B độc lập.
Bài 5.6 trang 76 Sách bài tập (SBT) Đại số và giải tích 11
Một con súc sắc cân đối và đồng chất được gieo hai lần. Tính xác suất sao cho
a) Tổng số chấm của hai lần gieo là 6.
b) Ít nhất một lần gieo xuất hiện mặt một chấm.
Giải :
Rõ ràng: \(\Omega = \left\{ {\left( {i,j} \right):1 \le i,j \le 6} \right\}\)
Kí hiệu
A1: "Lần đầu xuất hiện mặt 1 chấm";
B1:“Lần thứ hai xuất hiện mặt 1 chấm” ;
C. “Tổng số chấm là 6” ;
D. “Mặt 1 chấm xuất hiệnít nhất 1 lần” ;
a) Ta có \(C = \left\{ {\left( {1,5} \right),\left( {5,1} \right),\left( {2,4} \right),\left( {4,2} \right),\left( {3,3} \right)} \right\}\), \({\rm{P}}\left( C \right) = {5 \over {36}}\)
b) Ta có A B độc lập và \(D = {A_1} \cup {B_1}\) nên
\(\eqalign{
& P\left( D \right) = P\left( {{A_1}} \right) + P\left( {{B_1}} \right) - P\left( {{A_1}{B_1}} \right) \cr
& = {1 \over 6} + {1 \over 6} - {1 \over 6}.{1 \over 6} = {{11} \over {36}}. \cr} \)
Giaibaitap.me
Giải bài tập trang 76 bài 5 xác suất của biến cố Sách bài tập (SBT) Đại số và giải tích 11. Câu 5.7: Trong kì kiểm tra chất lượng ở hai khối lớp, mỗi khối có 25% học sinh trượt Toán, 15% trượt Lí và 10% trượt Hoá...
Giải bài tập trang 77 bài ôn tập chương II: Tổ hợp - xác suất Sách bài tập (SBT) Đại số và giải tích 11. Câu 1: Xếp ngẫu nhiên ba người đàn ông, hai người đàn bà và một đứa bé vào ngồi trên 6 cái ghế, xếp thành hàng ngang...
Giải bài tập trang 77 bài ôn tập chương II: Tổ hợp - xác suất Sách bài tập (SBT) Đại số và giải tích 11. Câu 5: Tính xác suất sao cho trong 13 con bài tú lơ khơ được chia ngẫu nhiên cho bạn Bình có 4 con pích, 3 con rô, 3 con cơ và 3 con nhép...
Giải bài tập trang 78 bài 1 quy tắc đếm Sách bài tập (SBT) Đại số và giải tích 11. Câu 1.1: Nam đến cửa hàng văn phòng phẩm để mua quà tặng bạn...