Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 11

CHƯƠNG III. DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

Giải bài tập trang 127, 128 bài ôn tập chương III Dãy số, cấp số cộng và cấp số nhân Sách bài tập (SBT) Đại số và giải tích 11. Câu 5: Cho dãy số...

Bài 5 trang 127 Sách bài tập (SBT) Đại số và giải tích 11

Cho dãy số

\(\eqalign{
& \left( {{u_n}} \right): \cr
& {\rm{ }}\left\{ \matrix{
{u_1} = {1 \over 3} \hfill \cr
{u_{n + 1}} = {{\left( {n + 1} \right){u_n}} \over {3n}}{\rm{voi }}n \ge 1 \hfill \cr} \right. \cr} \) 

a)      Viết năm số hạng đầu của dãy số.

b)      Lập dãy số \(\left( {{v_n}} \right)\) với \({v_n} = {{{u_n}} \over n}\). Chứng minh dãy số \(\left( {{v_n}} \right)\) là cấp số nhân.

c)      Tìm công thức tính \(\left( {{u_n}} \right)\) theo n.

Giải:

a)      Năm số hạng đầu là \({1 \over 3},{2 \over 9},{1 \over 9},{4 \over {81}},{5 \over {243}}\)

b)      Lập tỉ số \({{{v_{n + 1}}} \over {{v_n}}} = {{{u_{n + 1}}} \over {n + 1}}.{n \over {{u_n}}} = {{{u_{n + 1}}} \over {{u_n}}}.{n \over {n + 1}}\)    (1)

Theo công thứcđịnh nghĩa ta có \({{{u_{n + 1}}} \over {{u_n}}} = {{n + 1} \over {3n}}\)    (2)

Từ (1) và (2) suy ra \({{{v_{n + 1}}} \over {{v_n}}} = {1 \over 3}\) hay \({v_{n + 1}} = {1 \over 3}{v_n}\)

Vậy, dãy số \(\left( {{v_n}} \right)\) là cấp số nhân, có \({v_1} = {1 \over 3},q = {1 \over 3}\)

c)      Để tính \(\left( {{u_n}} \right)\), ta viết tích của n - 1 tỉ số bằng \(\,{1 \over 3}\)

\({{{v_n}} \over {{v_{n - 1}}}}.{{{v_{n - 1}}} \over {{v_{n - 2}}}}...{{{v_3}} \over {{v_2}}}.{{{v_2}} \over {{v_1}}} = {\left( {{1 \over 3}} \right)^{n - 1}}\)

Hay \({{{v_n}} \over {{v_1}}} = {\left( {{1 \over 3}} \right)^{n - 1}}\), suy ra \({v_n} = {1 \over 3}{\left( {{1 \over 3}} \right)^{n - 1}} = {1 \over {{3^n}}}\)

Vậy \({u_n} = {n \over {{3^n}}}\)


Bài 6 trang 128 Sách bài tập (SBT) Đại số và giải tích 11

Ba số có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, hoặc là các số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng để tổng của chúng là 820 ?

Giải:

HD: Gọi số hạng thứ hai của cấp số cộng là \({u_2}\), ta có

\({u_9} = {u_2} + 7d,{u_{44}} = {u_2} + 42d\)           

Sử dụng tính chất của cấp số nhân \({u_2}.{u_{44}} = u_9^2\) và tổng các số là 217, ta có một hệ phương trìnhđể tìm \({u_2}\) và d.

ĐS: n = 20


Bài 7 trang 128 Sách bài tập (SBT) Đại số và giải tích 11

Một cấp số cộng và một cấp số nhân có số hạng thứ nhất bằng 5, số hạng thứ hai của cấp số cộng lớn hơn số hạng thứ hai của cấp số nhân là 10, còn các số hạng thứ ba bằng nhau. Tìm các cấp số ấy.

Giải:

ĐS: Cấp số cộng: 5, 25, 45 

Cấp số nhân: 5, 15, 45


Bài 8 trang 128 Sách bài tập (SBT) Đại số và giải tích 11

Chứng minh rằng nếu ba số lập thành một cấp số nhân, đồng thời lập thành cấp số cộng thì ba số ấy bằng nhau.

Giải:

HD: Gọi 3 số đó là $a - d, a, a + d rồi áp dụng tính chất của cấp số cộng và cấp số nhân.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác