Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 11

CHƯƠNG III. DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

Giải bài tập trang 128 bài ôn tập chương III Dãy số, cấp số cộng và cấp số nhân Sách bài tập (SBT) Đại số và giải tích 11. Câu 12: Tính tổng...

Bài 12 trang 128 Sách bài tập (SBT) Đại số và giải tích 11

Tính tổng :

a) \({S_n} = 1 + 2a + 3{a^2} + ... + n{a^{n - 1}}\) 

b) \({S_n} = 1.x + 2.{x^2} + 3.{x^3} + ... + n{x^n}\)    

Giải:

a)      HD: Với a = 1 ta có \({S_n} = 1 + 2 + 3 + ... + n = {{n\left( {n + 1} \right)} \over 2}\)

Giả sử a ≠ 1. Nhân hai vế của hệ thức \({S_n} = 1 + 2a + 3{a^2} + ... + n{a^{n - 1}}\) với a và tính hiệu

\({S_n} - a{S_n} = \left( {1 - a} \right){S_n}\)

Từ đó, ta tính được \({S_n} = {{n{a^{n + 1}} - \left( {n + 1} \right){a^n} + 1} \over {{{\left( {a - 1} \right)}^2}}}\)

b)      Làm tương tự như câu a).


Bài 13 trang 128 Sách bài tập (SBT) Đại số và giải tích 11

Tìm m để phương trình \({x^4} - \left( {3m + 5} \right){x^2} + {\left( {m + 1} \right)^2} = 0\) có bốn nghiệm lập thành cấp số cộng.

Giải:

Đặt \({x^4} = y\) ta có phương trình

\({y^2} - \left( {3m + 5} \right)y + {\left( {m + 1} \right)^2} = 0\)         (1)

Để phương trình có 4 nghiệm thì phương trình (1) phải có 2 nghiệm dương \({y_1},{y_2}{\rm{ }}\left( {{y_1} < {y_2}} \right)\) Bốn nghiệm đó là \( - \sqrt {{y_2}} , - \sqrt {{y_1}} ,\sqrt {{y_1}} ,\sqrt {{y_2}} \).

Điều kiện để 4 nghiệm trên lập thành cấp số cộng là \(\sqrt {{y_2}}  - \sqrt {{y_1}}  = 2\sqrt {{y_1}} \) hay \({y_2} = 9{y_1}\)  kết hợp vớiđịnh lí Vi-ét tìm được m = 5 và \(m =  - {{25} \over {19}}\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác