Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.4 trên 5 phiếu

Giải bài tập Toán 11 Nâng cao

CHƯƠNG IV. GIỚI HẠN - TOÁN 11 NÂNG CAO

Giải bài tập trang 158, 159 bài 5 giới hạn một bên SGK Đại số và Giải tích 11 Nâng cao. Câu 26: Áp dụng định nghĩa giới hạn bên phải và giới hạn bên trái của hàm số, tìm các giới hạn sau...

Câu 26 trang 158 SGK Đại số và Giải tích 11 Nâng cao

Áp dụng định nghĩa giới hạn bên phải và giới hạn bên trái của hàm số, tìm các giới hạn sau :

a.  \(\mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1} \)

b.  \(\mathop {\lim }\limits_{x \to {5^ - }} \left( {\sqrt {5 - x} + 2x} \right)\)

c.  \(\mathop {\lim }\limits_{x \to {3^ + }} {1 \over {x - 3}}\)

d.  \(\mathop {\lim }\limits_{x \to {3^ - }} {1 \over {x - 3}}\)

Giải:

a.  \(\mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1} = 0\)

b.  \(\mathop {\lim }\limits_{x \to 5} \left( {\sqrt {5 - x} + 2x} \right) = 2.5 = 10\)

c.  \(\mathop {\lim }\limits_{x \to {3^ + }} {1 \over {x - 3}} = + \infty \,\left( {\text{ vì }\,x > 3} \right)\)

d.  \(\mathop {\lim }\limits_{x \to {3^ - }} {1 \over {x - 3}} = - \infty \,\left( {\text{ vì }\,x < 3} \right)\)

 


Câu 27 trang 158 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau (nếu có) :

a.  \(\mathop {\lim }\limits_{x \to {2^ + }} {{\left| {x - 2} \right|} \over {x - 2}}\)

b.  \(\mathop {\lim }\limits_{x \to {2^ - }} {{\left| {x - 2} \right|} \over {x - 2}}\)

c.  \(\mathop {\lim }\limits_{x \to 2} {{\left| {x - 2} \right|} \over {x - 2}}\)

Giải:

a. Với mọi \(x > 2\), ta có \(\left| {x - 2} \right| = x - 2.\) Do đó :

\(\mathop {\lim }\limits_{x \to {2^ + }} {{\left| {x - 2} \right|} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} {{x - 2} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} 1 = 1\)

b. Với mọi \(x < 2\), ta có \(|x – 2| = 2 – x\). Do đó :

\(\mathop {\lim }\limits_{x \to {2^ - }} {{\left| {x - 2} \right|} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} {{2 - x} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} - 1 = - 1\)

c. Vì \(\mathop {\lim }\limits_{x \to {2^ + }} {{\left| {x - 2} \right|} \over {x - 2}} \ne \mathop {\lim }\limits_{x \to {2^ - }} {{\left| {x - 2} \right|} \over {x - 2}}\) nên không tồn tại  \(\mathop {\lim }\limits_{x \to 2} {{\left| {x - 2} \right|} \over {x - 2}}\)

 


Câu 28 trang 158 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau :

a.  \(\mathop {\lim }\limits_{x \to {0^ + }} {{x + 2\sqrt x } \over {x - \sqrt x }}\)

b.  \(\mathop {\lim }\limits_{x \to {2^ - }} {{4 - {x^2}} \over {\sqrt {2 - x} }}\)

c.  \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }}\)

d.  \(\mathop {\lim }\limits_{x \to {3^ - }} {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }}\)

Giải

a. Với \(x > 0\), ta có :  \({{x + 2\sqrt x } \over {x - \sqrt x }} = {{\sqrt x \left( \sqrt x + 2  \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}} = {{\sqrt x + 2} \over {\sqrt x - 1}}\)

do đó :  \(\mathop {\lim }\limits_{x \to {0^ + }} {{x + 2\sqrt x } \over {x - \sqrt x }} = \mathop {\lim }\limits_{x \to {0^ + }} {{\sqrt x + 2} \over {\sqrt x - 1}} = {2 \over { - 1}} = - 2\)

b. Với \(x < 2\), ta có :  \({{4 - {x^2}} \over {\sqrt {2 - x} }} = {{\left( {2 - x} \right)\left( {2 + x} \right)} \over {\sqrt {2 - x} }} = \left( {x + 2} \right)\sqrt {2 - x} \)

Do đó  \(\mathop {\lim }\limits_{x \to {2^ - }} {{4 - {x^2}} \over {\sqrt {2 - x} }} = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 2} \right)\sqrt {2 - x} = 0\)

c. Với mọi \(x > -1\)

\({{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }} = {{\left( {x + 1} \right)\left( {x + 2} \right)} \over {{x^2}\sqrt {x + 1} }} = {{\sqrt {x + 1} \left( {x + 2} \right)} \over {{x^2}}}\)

Do đó  \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{\sqrt {x + 1} \left( {x + 2} \right)} \over {{x^2}}} = 0\)

d. Với \(-3 < x < 3\)

\({{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }} = {{\sqrt {\left( {3 - x} \right)\left( {4 - x} \right)} } \over {\sqrt {\left( {3 - x} \right)\left( {3 + x} \right)} }} = {{\sqrt {4 - x} } \over {\sqrt {3 + x} }}\)

Do đó  \(\mathop {\lim }\limits_{x \to {3^ - }} {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }} = {1 \over {\sqrt 6 }} = {{\sqrt 6 } \over 6}\)

 


Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số

\(f\left( x \right) = \left\{ {\matrix{{2\left| x \right| - 1\,\text{ với }\,x \le - 2,} \cr {\sqrt {2{x^2} + 1} \,\text{ với }\,x > - 2.} \cr} } \right.\)

Tìm \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right),\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\,\text{ và }\,\mathop {\lim }\limits_{x \to - 2} f\left( x \right)\) (nếu có).

Giải

Ta có:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \left( {2\left| x \right| - 1} \right) = 2\left| { - 2} \right| - 1 = 3 \cr
& \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \sqrt {2{x^2} + 1} = 3 \Rightarrow \mathop {\lim }\limits_{x \to - 2} f\left( x \right) = 3. \cr} \)

 


Câu 30 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau :

a.  \(\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 8} \right|\)

b.  \(\mathop {\lim }\limits_{x \to 2} {{{x^2} + x + 1} \over {{x^2} + 2x}}\)

c.  \(\mathop {\lim }\limits_{x \to - 1} \sqrt {{{{x^3}} \over {{x^2} - 3}}} \)

d.  \(\mathop {\lim }\limits_{x \to 3} \root 3 \of {{{2x\left( {x + 1} \right)} \over {{x^2} - 6}}} \)

e.  \(\mathop {\lim }\limits_{x \to - 2} {{\sqrt {1 - {x^3}} - 3x} \over {2{x^2} + x - 3}}\)

f.  \(\mathop {\lim }\limits_{x \to - 2} {{2\left| {x + 1} \right| - 5\sqrt {{x^2} - 3} } \over {2x + 3}}\)

Giải

a.  \(\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 8} \right| = \left| {{{\left( {\sqrt 3 } \right)}^2} - 8} \right| = 5\)

b.  \(\mathop {\lim }\limits_{x \to 2} {{{x^2} + x + 1} \over {{x^2} + 2x}} = {{{2^2} + 2 + 1} \over {{2^2} + 2.2}} = {7 \over 8}\)

c.  \(\mathop {\lim }\limits_{x \to - 1} \sqrt {{{{x^3}} \over {{x^2} - 3}}} = \sqrt {{1 \over 2}} = {{\sqrt 2 } \over 2}\)

d.  \(\mathop {\lim }\limits_{x \to 3} \root 3 \of {{{2x\left( {x + 1} \right)} \over {{x^2} - 6}}} = \root 3 \of {{{24} \over 3}} = 2\)

e.  \(\mathop {\lim }\limits_{x \to - 2} {{\sqrt {1 - {x^3}} - 3x} \over {2{x^2} + x - 3}} = {{3 + 6} \over {8 - 5}} = 3\)

f.  \(\mathop {\lim }\limits_{x \to - 2} {{2\left| {x + 1} \right| - 5\sqrt {{x^2} - 3} } \over {2x + 3}} = {{2 - 5} \over { - 4 + 3}} = 3\)

 


Câu 31 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau :

a.  \(\mathop {\lim }\limits_{x \to - \sqrt 2 } {{{x^3} + 2\sqrt 2 } \over {{x^2} - 2}}\)

b.  \(\mathop {\lim }\limits_{x \to 3} {{{x^4} - 27x} \over {2{x^2} - 3x - 9}}\)

c.  \(\mathop {\lim }\limits_{x \to - 2} {{{x^4} - 16} \over {{x^2} + 6x + 8}}\)

d.  \(\mathop {\lim }\limits_{x \to {1^ - }} {{\sqrt {1 - x} + x - 1} \over {\sqrt {{x^2} - {x^3}} }}\)

Giải:

a. Ta có:

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \sqrt 2 } = {{{x^3} + 2\sqrt 2 } \over {{x^2} - 2}} = \mathop {\lim }\limits_{x \to - \sqrt 2 } {{{x^3} + {{\left( {\sqrt 2 } \right)}^3}} \over {{x^2} - {{\left( {\sqrt 2 } \right)}^2}}} \cr
& = \mathop {\lim }\limits_{x \to - \sqrt 2 } {{\left( {x + \sqrt 2 } \right)\left( {{x^2} - x\sqrt 2 + 2} \right)} \over {\left( {x + \sqrt 2 } \right)\left( {x - \sqrt 2 } \right)}} \cr
& = \mathop {\lim }\limits_{x \to - \sqrt 2 } {{{x^2} - x\sqrt 2 + 2} \over {x - \sqrt 2 }} = {{ - 3\sqrt 2 } \over 2} \cr} \)

b.

\(\eqalign{
& \mathop {\lim }\limits_{x \to 3} {{{x^4} - 27x} \over {2{x^2} - 3x - 9}} = \mathop {\lim }\limits_{x \to 3} {{x\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right)} \over {\left( {x - 3} \right)\left( {2x + 3} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 3} {{x\left( {{x^2} + 3x + 9} \right)} \over {2x + 3}} = 9 \cr} \)

c.

\(\eqalign{
& \mathop {\lim }\limits_{x \to - 2} {{{x^4} - 16} \over {{x^2} + 6x + 8}} = \mathop {\lim }\limits_{x \to - 2} {{\left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)} \over {\left( {x + 2} \right)\left( {x + 4} \right)}} \cr
& = \mathop {\lim }\limits_{x \to - 2} {{\left( {x - 2} \right)\left( {{x^2} + 4} \right)} \over {x + 4}} = - 16 \cr} \)

d.

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} {{\sqrt {1 - x} + x - 1} \over {\sqrt {{x^2} - {x^3}} }} = \mathop {\lim }\limits_{x \to {1^ - }} {{\sqrt {1 - x} - \left( {1 - x} \right)} \over {\left| x \right|\sqrt {1 - x} }} \cr
& = \mathop {\lim }\limits_{x \to {1^ - }} {{1 - \sqrt {1 - x} } \over {\left| x \right|}} = 1 \cr} \)

 


Câu 32 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau :

a.  \(\mathop {\lim }\limits_{x \to + \infty } \root 3 \of {{{2{x^5} + {x^3} - 1} \over {\left( {2{x^2} - 1} \right)\left( {{x^3} + x} \right)}}} \)

b.  \(\mathop {\lim }\limits_{x \to - \infty } {{2\left| x \right| + 3} \over {\sqrt {{x^2} + x + 5} }}\)

c.  \(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^2} + x} + 2x} \over {2x + 3}}\)

d.  \(\mathop {\lim }\limits_{x \to + \infty } \left( {x + 1} \right)\sqrt {{x \over {2{x^4} + {x^2} + 1}}} \)

Giải

a.  \(\mathop {\lim }\limits_{x \to + \infty } \root 3 \of {{{2{x^5} + {x^3} - 1} \over {\left( {2{x^2} - 1} \right)\left( {{x^3} + x} \right)}}} = \mathop {\lim }\limits_{x \to + \infty } \root 3 \of {{{2 + {1 \over {{x^2}}} - {1 \over {{x^5}}}} \over {\left( {2 - {1 \over {{x^2}}}} \right)\left( {1 + {1 \over {{x^2}}}} \right)}}} = 1\)

b.

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } {{2\left| x \right| + 3} \over {\sqrt {{x^2} + x + 5} }} = \mathop {\lim }\limits_{x \to - \infty } {{2\left| x \right| + 3} \over {\left| x \right|\sqrt {1 + {1 \over x} + {5 \over {{x^2}}}} }} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{ - 2x + 3} \over { - x\sqrt {1 + {1 \over x} + {5 \over {{x^2}}}} }} =\mathop {\lim }\limits_{x \to  - \infty } {{2 - {3 \over x}} \over {\sqrt {1 + {1 \over x} + {5 \over {{x^2}}}} }}= 2 \cr} \)

c.  \({x^2} + x \ge 0 \Leftrightarrow x \le - 1\,\text{ hoặc }\,x \ge 0\)

Với mọi \(x ≤ -1\),  \(x \ne - {3 \over 2}\)

\({{\sqrt {{x^2} + x} + 2x} \over {2x + 3}} = {{\left| x \right|\sqrt {1 + {1 \over x}} + 2x} \over {2x + 3}} = {{ - x\sqrt {1+ {1 \over x}} + 2x} \over {2x + 3}} = {{ - \sqrt {1 + {1 \over x}} + 2} \over {2 + {3 \over x}}}\)

Do đó  \(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^2} + x} + 2x} \over {2x + 3}} =\mathop {\lim }\limits_{x \to - \infty }{{ - \sqrt {1 + {1 \over x}} + 2} \over {2 + {3 \over x}}}= {1 \over 2}\)

d.

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } \left( {x + 1} \right)\sqrt {{x \over {2{x^4} + {x^2} + 1}}} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {{{x{{\left( {x + 1} \right)}^2}} \over {2{x^4} + {x^2} + 1}}} \cr
& = \mathop {\lim }\limits_{x \to + \infty } \sqrt {{{{1 \over x} + {2 \over {{x^2}}} + {1 \over {{x^3}}}} \over {2 + {1 \over {{x^2}}} + {1 \over {{x^4}}}}}} = 0 \cr} \)

 


Câu 33 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số

\(f\left( x \right) = \left\{ {\matrix{{{x^2} - 2x + 3\,\text{ với }\,x \le 2.} \cr {4x - 3\,\text{ với }\,x > 2} \cr} } \right.\)

Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\,\text{ và }\,\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) (nếu có).

Giải:

Ta có:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {4x - 3} \right) =4.2-3= 5 \cr
& \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 2x + 3} \right) =2^2-2.2+3= 3 \cr} \)

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) nên không tồn tại  \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác