Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 11 Nâng cao

ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Giải bài tập trang 226 ôn tập cuối năm SGK Đại số và Giải tích 11 Nâng cao. Câu 16: Tính giới hạn của các dãy số sau ...

Câu 16 trang 226 SGK Đại số và Giải tích 11 Nâng cao

Tính giới hạn của các dãy số sau :

a. \(\lim {{{n^4} - 40{n^3} + 15n - 7} \over {{n^4} + n + 100}}\)

b. \(\lim {{2{n^3} + 35{n^2} - 10n + 3} \over {5{n^5} - {n^3} + 2n}}\)

c. \(\lim {{\sqrt {6{n^4} + n + 1} } \over {2n + 1}}\)

d. \(\lim {{{{3.2}^n} - {{8.7}^n}} \over {{{4.3}^n} + {{5.7}^n}}}\)

Giải:

a. \(\lim {{{n^4} - 40{n^3} + 15n - 7} \over {{n^4} + n + 100}} = \lim {{1 - {{40} \over n} + {{15} \over {{n^3}}} - {7 \over {{n^4}}}} \over {1 + {1 \over {{n^3}}} + {{100} \over {{n^4}}}}} = 1\)

b. \(\lim {{2{n^3} + 35{n^2} - 10n + 3} \over {5{n^5} - {n^3} + 2n}} = \lim {{{2 \over {{n^2}}} + {{35} \over {{n^3}}} - {{10} \over {{n^4}}} + {3 \over {{n^5}}}} \over {5 - {1 \over {{n^2}}} + {2 \over {{n^4}}}}} = 0\)

c. \(\lim {{\sqrt {6{n^4} + n + 1} } \over {2n + 1}} = \lim {{{n^2}\sqrt {6 + {1 \over {{n^3}}} + {1 \over {{n^4}}}} } \over {n\left( {2 + {1 \over n}} \right)}} = \lim {{n.\sqrt {6 + {1 \over {{n^3}}} + {1 \over {{n^4}}}} } \over {2 + {1 \over n}}} \)

\(=  + \infty \)

d. \(\lim {{{{3.2}^n} - {{8.7}^n}} \over {{{4.3}^n} + {{5.7}^n}}} = \lim {{3.{{\left( {{2 \over 7}} \right)}^n} - 8} \over {4{{\left( {{3 \over 7}} \right)}^n} + 5}} =  - {8 \over 5}\)  

 

Câu 17 trang 226 SGK Đại số và Giải tích 11 Nâng cao

Tính các giới hạn sau :

a. \(\lim \sqrt {3{n^4} - 10n + 12} \)

b. \(\lim \left( {{{2.3}^n} - {{5.4}^n}} \right)\)

c. \(\lim \left( {\sqrt {{n^4} + {n^2} + 1}  - {n^2}} \right)\)

d. \(\lim {1 \over {\sqrt {{n^2} + 2n}  - n}}\)

Giải:

a. \(\lim \sqrt {3{n^4} - 10n + 12}  = \lim {n^2}.\sqrt {3 - {{10} \over {{n^3}}} + {{12} \over {{n^4}}}}  \)

                                           \(=  + \infty \)

b. \(\lim \left( {{{2.3}^n} - {{5.4}^n}} \right) = \lim {4^n}\left[ {2{{\left( {{3 \over 4}} \right)}^n} - 5} \right] =  - \infty \)

c.

 \(\eqalign{  & \lim \left( {\sqrt {{n^4} + {n^2} + 1}  - {n^2}} \right) \cr&= \lim {{{n^2} + 1} \over {\sqrt {{n^4} + {n^2} + 1}  + {n^2}}}  \cr  &  = \lim {{1 + {1 \over {{n^2}}}} \over {\sqrt {1 + {1 \over {{n^2}}} + {1 \over {{n^4}}}}  + 1}} = {1 \over 2} \cr} \)

 d. \(\lim {1 \over {\sqrt {{n^2} + 2n }- n }} = \lim {{\sqrt {{n^2} + 2n}  + n} \over {2n}} = \lim {{\sqrt {1 + {2 \over n} }+ 1 } \over 2} = 1\)

 

Câu 18 trang 226 SGK Đại số và Giải tích 11 Nâng cao

Tìm số hạng đầu và công bội của một cấp số nhân lùi vô hạn, biết rằng số hạng thứ hai là \({{12} \over 5}\) và tổng của cấp số nhân này là 15.

Giải:

Gọi u1, q là số hạng đầu và cộng bội của cấp số nhân (|q| < 1). Theo đề bài ta có :

\(\left\{ {\matrix{   {{u_1}q = {{12} \over 5}}  \cr   {{{{u_1}} \over {1 - q}} = 15}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {{u_1} = 12}  \cr   {q = {1 \over 5}}  \cr  } } \right.\,\text{hoặc} \;\left\{ {\matrix{   {{u_1} = 3}  \cr   {q = {4 \over 5}}  \cr  } } \right.\)

 

Câu 19 trang 226 SGK Đại số và Giải tích 11 Nâng cao

Tính giới hạn của các hàm số sau :

a. \(\mathop {\lim }\limits_{x \to  - 1} {{{x^2} + x + 10} \over {{x^3} + 6}}\)

b. \(\mathop {\lim }\limits_{x \to  - 5} {{{x^2} + 11x + 30} \over {25 - {x^2}}}\)

c. \(\mathop {\lim }\limits_{x \to  - \infty } {{{x^6} + 4{x^2} + x - 2} \over {{{\left( {{x^3} + 2} \right)}^2}}}\)

d. \(\mathop {\lim }\limits_{x \to  + \infty } {{{x^2} + x - 40} \over {2{x^5} + 7{x^4} + 21}}\)

e. \(\mathop {\lim }\limits_{x \to  - \infty } {{\sqrt {2{x^4} + 4{x^2} + 3} } \over {2x + 1}}\)

f. \(\mathop {\lim }\limits_{x \to  + \infty } \left( {2x + 1} \right)\sqrt {{{x + 1} \over {2{x^3} + x}}} \)

g. \(\mathop {\lim }\limits_{x \to  + \infty } \sqrt {9{x^2} + 11x - 100} \)

h. \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {5{x^2} + 1}  - x\sqrt 5 } \right)\)

i. \(\mathop {\lim }\limits_{x \to  + \infty } {1 \over {\sqrt {{x^2} + x + 1}  - x}}\)

Giải:

a. \(\mathop {\lim }\limits_{x \to  - 1} {{{x^2} + x + 10} \over {{x^3} + 6}} = {{1 + \left( { - 1} \right) + 10} \over { - 1 + 6}} = 2\)

b. \(\mathop {\lim }\limits_{x \to  - 5} {{{x^2} + 11x + 30} \over {25 - {x^2}}} = \mathop {\lim }\limits_{x \to  - 5} {{\left( {x + 5} \right)\left( {x + 6} \right)} \over {\left( {5 - x} \right)\left( {5 + x} \right)}} = \mathop {\lim }\limits_{x \to  - 5} {{x + 6} \over {5 - x}} = {1 \over {10}}\)

c. \(\mathop {\lim }\limits_{x \to  - \infty } {{{x^6} + 4{x^2} + x - 2} \over {{{\left( {{x^3} + 2} \right)}^2}}} = \mathop {\lim }\limits_{x \to  - \infty } {{1 + {4 \over {{x^4}}} + {1 \over {{x^5}}} - {2 \over {{x^6}}}} \over {{{\left( {1 + {2 \over {{x^3}}}} \right)}^2}}} = 1\)

d. \(\mathop {\lim }\limits_{x \to  + \infty } {{{x^2} + x - 40} \over {2{x^5} + 7{x^4} + 21}} = \mathop {\lim }\limits_{x \to  + \infty } {{{1 \over {{x^3}}} + {1 \over {{x^4}}} - {{40} \over {{x^5}}}} \over {2 + {7 \over x} + {{21} \over {{x^5}}}}} =  + \infty \)

e. Với mọi x < 0, ta có \({1 \over x}\sqrt {2{x^4} + 4{x^2} + 3}  =  - \sqrt {2{x^2} + 4 + {3 \over {{x^2}}}} \)

Do đó :

\(\eqalign{  & \mathop {\lim }\limits_{x \to  - \infty } {{\sqrt {2{x^4} + 4{x^2} + 3} } \over {2x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } {{{1 \over x}\sqrt {2{x^4} + 4{x^2} + 3} } \over {2 + {1 \over x}}}  \cr  &  = \mathop {\lim }\limits_{x \to  - \infty } {{ - \sqrt {2{x^2} + 4 + {3 \over {{x^2}}}} } \over {2 + {1 \over x}}} =  - \infty  \cr} \)

f. \(\mathop {\lim }\limits_{x \to  + \infty } \left( {2x + 1} \right)\sqrt {{{x + 1} \over {2{x^3} + x}}}  = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {{{{{\left( {2x + 1} \right)}^2}\left( {x + 1} \right)} \over {2{x^3} + x}}}  = \sqrt 2 \)

g. \(\mathop {\lim }\limits_{x \to  + \infty } \sqrt {9{x^2} + 11x - 100}  = \mathop {\lim }\limits_{x \to  + \infty } x\sqrt {9 + {{11} \over x} - {{100} \over {{x^2}}}}  =  + \infty \)

h. \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {5{x^2} + 1}  - x\sqrt 5 } \right) = \mathop {\lim }\limits_{x \to  + \infty } {1 \over {\sqrt {5{x^2} + 1}  + x\sqrt 5 }} = 0\)

i.

\(\eqalign{  & \mathop {\lim }\limits_{x \to  + \infty } {1 \over {\sqrt {{x^2} + x + 1}  - x}} = \mathop {\lim }\limits_{x \to  + \infty } {{\sqrt {{x^2} + x + 1}  + x} \over {x + 1}}  \cr  &  = \mathop {\lim }\limits_{x \to  + \infty } {{\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}}  + 1} \over {1 + {1 \over x}}} = 2 \cr} \) 

 

Câu 20 trang 226 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng phương trình \({x^3} + a{x^2} + bx + c = 0\) luôn có ít nhất một nghiệm.

Giải


Đặt \(f(x)={x^3} + a{x^2} + bx + c = 0\)

Do \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - \infty \) nên  có số \(α < 0\) sao cho \(f(α) < 0\).

Do \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty \) nên có số \(β > 0\) sao cho \(f(β) > 0\).

Hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) liên tục trên \(\mathbb R\) chứa đoạn \(\left[ {\alpha ;\beta } \right]\) nên theo định lý về giá trị trung gian của hàm số liên tục, tồn tại số \(d \in \left[ {\alpha ;\beta } \right]\) sao cho \(f(d) = 0\). Đó chính là nghiệm của phương trình \(f(x) = 0\).

Giabaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác