Câu 1 trang 223 SGK Đại số và Giải tích 11 Nâng cao
a. Tính \(\sin {\pi \over 8}\,\text{ và }\,\cos {\pi \over 8}\)
b. Chứng minh rằng có hằng số C > 0 để có đẳng thức
\(\sin x + \left( {\sqrt 2 - 1} \right)\cos x = C\cos \left( {x - {{3\pi } \over 8}} \right)\) với mọi x.
Giải:
a. Ta có:
\(\eqalign{ & {\sin ^2}{\pi \over 8} = {{1 - \cos {\pi \over 4}} \over 2} = {{1 - {{\sqrt 2 } \over 2}} \over 2} = {{2 - \sqrt 2 } \over 4} \cr & \Rightarrow \sin {\pi \over 8} = {1 \over 2}\sqrt {2 - \sqrt 2 } \cr & {\cos ^2}{\pi \over 8} = {{1 + \cos {\pi \over 4}} \over 2} = {{1 + {{\sqrt 2 } \over 2}} \over 2} = {{2 + \sqrt 2 } \over 4} \cr & \Rightarrow \cos {\pi \over 8} = {1 \over 2}\sqrt {2 + \sqrt 2 } \cr} \)
b. Ta có:
\(\eqalign{ & {1^2} + {\left( {\sqrt 2 - 1} \right)^2} = 4 - 2\sqrt 2 .\,\text{ Do đó}\,: \cr & \sin x + \left( {\sqrt 2 - 1} \right)\cos x \cr & = \left( {\sqrt {4 - 2\sqrt 2 } } \right)\left( {{1 \over {\sqrt {4 - 2\sqrt 2 } }}\sin x + {{\sqrt 2 - 1} \over {\sqrt {4 - 2\sqrt 2 } }}\cos x} \right) \cr & = \sqrt {4 - 2\sqrt 2 } \left( {\sin x\cos {\pi \over 8} + \sin {\pi \over 8}\cos x} \right) \cr & = \sqrt {4 - 2\sqrt 2 } \sin \left( {x + {\pi \over 8}} \right) \cr & = \sqrt {4 - 2\sqrt 2 } \cos \left( {x - {{3\pi } \over 8}} \right) \cr & \text{ Vì }\,{1 \over {\sqrt {4 - 2\sqrt 2 } }} = {{\sqrt {4 + 2\sqrt 2 } } \over {\sqrt 8 }} = {1 \over 2}\sqrt {2 + \sqrt 2 } = \cos {\pi \over 8}. \cr & \text{Vậy }\,C = \sqrt {4 - 2\sqrt 2 } \cr} \)
Câu 2 trang 223 SGK Đại số và Giải tích 11 Nâng cao
Giải phương trình
\(\tan x = \cot 2x\)
Biểu diễn các nghiệm trên đường tròn lượng giác.
Giải:
Điều kiện
\({\mathop{\rm cosx}\nolimits} .sin2x \ne 0 \Leftrightarrow \left\{ {\matrix{ {\sin x \ne 0} \cr {\cos x \ne 0} \cr } } \right. \Leftrightarrow x \ne k{\pi \over 2}\)
\(\eqalign{ & \tan x = \cot 2x \Leftrightarrow {{\sin x} \over {\cos x}} = {{\cos 2x} \over {\sin 2x}} \cr& \Leftrightarrow\cos x \cos 2x - \sin x\sin 2x = 0 \cr & \Leftrightarrow \cos 3x = 0 \Leftrightarrow \cos x\left( {4{{\cos }^2}x - 3} \right) = 0 \cr & \Leftrightarrow {\cos ^2}x = {3 \over 4} \cr & \Leftrightarrow {{1 + \cos 2x} \over 2} = {3 \over 4} \Leftrightarrow \cos 2x = {1 \over 2} \cr & \Leftrightarrow x =\pm {\pi \over 6} + k\pi (k\in\mathbb Z) \cr} \)
Biểu diễn nghiệm trên đường tròn được 4 điểm.
Câu 3 trang 223 SGK Đại số và Giải tích 11 Nâng cao
a. Tìm giá trị nhỏ nhất của biểu thức \(P\left( x \right) = {\left( {\sin x + \cos x} \right)^3}\)
b. Tìm giá trị nhỏ nhất của biểu thức \(Q\left( x \right) = {1 \over {{{\sin }^2}x{{\cos }^2}x}}\)
c. Tìm giá trị nhỏ nhất của biểu thức \(R\left( x \right) = P\left( x \right) + Q\left( x \right)\)
Giải:
a. \(P\left( x \right) = 2\sqrt 2 {\cos ^3}\left( {x - {\pi \over 4}} \right) \ge - 2\sqrt 2 \) (đẳng thức xảy ra khi \(x = - {{3\pi } \over 4}+k2\pi\) )
Vậy \(\min P\left( x \right) = - 2\sqrt 2 \)
b. \(Q\left( x \right) = {4 \over {{{\sin }^2}2x}} \ge 4\) (đẳng thức xảy ra, chẳng hạn khi \(x = \pm {{3\pi } \over 4}\) )
Vậy min Q(x) = 4
c. \(R\left( x \right) = P\left( x \right) + Q\left( x \right) \ge 4 - 2\sqrt 2 \) (đẳng thức xảy ra, chẳng hạn khi \(x = - {{3\pi } \over 4}\)
Vậy \({\mathop{\rm min\,R}\nolimits} \left( x \right) = 4 - 2\sqrt 2 \)
Câu 4 trang 223 SGK Đại số và Giải tích 11 Nâng cao
Giải các phương trình :
a. \({\sin ^4}x + {\cos ^4}x = {3 \over 4}\)
b. \({\sin ^2}2x - {\sin ^2}x = {\sin ^2}{\pi \over 4}\)
c. \(\cos x\cos 2x = \cos 3x\)
d. \(\tan 2x - \sin 2x + \cos 2x - 1 = 0\)
Giải:
a.
\(\eqalign{ & {\sin ^4}x + {\cos ^4}x = {3 \over 4} \cr & \Leftrightarrow 1 - 2{\sin ^2}x{\cos ^2}x = {3 \over 4} \cr & \Leftrightarrow 1 - {1 \over 2}{\sin ^2}2x = {3 \over 4} \cr & \Leftrightarrow {\sin ^2}2x = {1 \over 2} \Leftrightarrow {{1 - \cos 4x} \over 2} = {1 \over 2} \cr & \Leftrightarrow \cos 4x = 0 \Leftrightarrow x = {\pi \over 8} + k{\pi \over 4},k \in\mathbb Z \cr} \)
b.
\(\eqalign{ & {\sin ^2}2x - {\sin ^2}x = {\sin ^2}{\pi \over 4} \cr & \Leftrightarrow 4{\sin ^2}x{\cos ^2}x - {\sin ^2}x = {1 \over 2} \cr & \Leftrightarrow 8{\sin ^2}x\left( {1 - {{\sin }^2}x} \right) - 2{\sin ^2}x = 1 \cr & \Leftrightarrow 8{\sin ^4}x - 6{\sin ^2}x + 1 = 0 \cr & \Leftrightarrow \left[ {\matrix{ {{{\sin }^2}x = {1 \over 2}} \cr {{{\sin }^2}x = {1 \over 4}} \cr } } \right. \Leftrightarrow \left[ {\matrix{ {{{1 - \cos 2x} \over 2} = {1 \over 2}} \cr {{{1 - \cos 2x} \over 2} = {1 \over 4}} \cr } } \right. \cr & \Leftrightarrow \left[ {\matrix{ {\cos 2x = 0} \cr {\cos 2x = {1 \over 2}} \cr } } \right. \Leftrightarrow \left[ {\matrix{ {x = {\pi \over 4} + k{\pi \over 2}} \cr {x = {\pi \over 6} + k{\pi \over 2}} \cr } } \right. \cr} \)
c.
\(\eqalign{ & \cos x\cos 2x = \cos 3x \cr & \Leftrightarrow {1 \over 2}\left( {\cos 3x + \cos x} \right) = \cos 3x \cr & \Leftrightarrow \cos 3x = \cos x \cr & \Leftrightarrow \left[ {\matrix{ {3x = x + k2\pi } \cr {3x = - x + k2\pi } \cr } } \right. \Leftrightarrow \left[ {\matrix{ {x = k\pi } \cr {x = k{\pi \over 2}} \cr } } \right.\cr& \Leftrightarrow x = k{\pi \over 2},k \in\mathbb Z \cr} \)
d. Điều kiên: \(\cos 2x \ne0\)
\(\eqalign{ & \tan 2x - \sin 2x + \cos 2x - 1 = 0 \cr & \Leftrightarrow \tan 2x\left( {1 - \cos 2x} \right) - \left( {1 - \cos 2x} \right) = 0 \cr & \Leftrightarrow \left( {1 - \cos 2x} \right)\left( {\tan 2x - 1} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{ {\tan 2x = 1} \cr {\cos 2x = 1} \cr } } \right. \Leftrightarrow \left[ {\matrix{ {x = {\pi \over 8} + k{\pi \over 2}} \cr {x = k\pi } \cr } } \right. k \in\mathbb Z \cr} \)
Câu 5 trang 224 SGK Đại số và Giải tích 11 Nâng cao
Giải các phương trình sau :
a. \(2\sin \left( {x + 10^\circ } \right) - \sqrt {12} \cos \left( {x + 10^\circ } \right) = 3\)
b. \(\sqrt 3 \cos 5x + \sin 5x = 2\cos 3x\)
c. \({\sin ^2}x - 3\sin x\cos x + 2{\cos ^2}x = 0\)
Giải
a.
\({a^2} + {b^2} = {2^2} + {\left( { - \sqrt {12} } \right)^2} = 16.\) Chia hai vế cho \(\sqrt {{a^2} + {b^2}} = 4\) ta được :
\(\eqalign{ & {1 \over 2}\sin \left( {x + 10^\circ } \right) - {{\sqrt 3 } \over 2}\cos \left( {x + 10^\circ } \right) = {3 \over 4} \cr & \Leftrightarrow \sin \left( {x + 10^\circ } \right)\cos 60^\circ - \sin 60^\circ \cos \left( {x + 10^\circ } \right) = {3 \over 4} \cr & \Leftrightarrow \sin \left( {x - 50^\circ } \right) = \sin \alpha \,\text{ với }\,\sin \alpha = {3 \over 4} \cr & \Leftrightarrow \left[ {\matrix{ {x - 50^\circ = \alpha + k360^\circ } \cr {x - 50^\circ = 180^\circ - \alpha + k360^\circ } \cr } } \right. \cr & \Leftrightarrow \left[ {\matrix{ {x = \alpha + 50^\circ + k360^\circ } \cr {x = 230^\circ - \alpha + k360^\circ } \cr } } \right. \cr} \)
b.
\(\eqalign{ & \sqrt 3 \cos 5x + \sin 5x = 2\cos 3x \cr & \Leftrightarrow {{\sqrt 3 } \over 2}\cos 5x + {1 \over 2}\sin 5x = \cos 3x \cr & \Leftrightarrow \cos 5x.\cos {\pi \over 6} + \sin 5x\sin {\pi \over 6} = \cos 3x \cr & \Leftrightarrow \cos \left( {5x - {\pi \over 6}} \right) = \cos 3x \cr & \Leftrightarrow \left[ {\matrix{ {5x - {\pi \over 6} = 3x + k2\pi } \cr {5x - {\pi \over 6} = - 3x + k2\pi } \cr } } \right. \Leftrightarrow \left[ {\matrix{ {x = {\pi \over {12}} + k\pi } \cr {x = {\pi \over {48}} + k{\pi \over 4}} \cr } } \right. \cr} \)
c. * \(\cos x = 0 \Rightarrow \sin x = \pm 1\,\text{ nên }\,x = {\pi \over 2} + k\pi \) không là nghiệm của phương trình.
* Chia hai vế phương trình cho \({\cos ^2}x\) ta được :
\({\tan ^2}x - 3\tan x + 2 = 0 \Leftrightarrow \left[ {\matrix{ {\tan x = 1} \cr {\tan x = 2} \cr } } \right.\)
\(\Leftrightarrow \left[ {\matrix{ {x = {\pi \over 4} + k\pi } \cr {x = \arctan 2 + k\pi } \cr } } \right.\)
Giaibaitap.me
Giải bài tập trang 224 ôn tập cuối năm SGK Đại số và Giải tích 11 Nâng cao. Câu 6: a) Tính...
Giải bài tập trang 225 ôn tập cuối năm SGK Đại số và Giải tích 11 Nâng cao. Câu 11: Ta đã biết ...
Giải bài tập trang 226 ôn tập cuối năm SGK Đại số và Giải tích 11 Nâng cao. Câu 16: Tính giới hạn của các dãy số sau ...
Giải bài tập trang 223, 224, 225, 226, 227 ôn tập cuối năm SGK Đại số và Giải tích 11 Nâng cao. Câu 21: a) Tìm đạo hàm của các hàm số sau ...