Bài 2.5 trang 66 Sách bài tập (SBT) Đại số và giải tích 11
Bốn người đàn ông, hai người đàn bà và một đứa trẻ được xếp ngồi vào bảy chiếc ghế đặt quanh một bàn tròn. Hỏi có bao nhiêu cách xếp sao cho:
a) Đứa trẻ ngồi giữa hai người đàn bà ?
b) Đứa trẻ ngồi giữa hai người đàn ông ?
Giải:
a) Xếp hai người đàn bà ngồi cạnh nhau.Có 2 cách.
Sau đó xếp đứa trẻ ngồi vào giữa. Có 1 cách.
Xếp 4 người đàn ông vào 4 ghế còn lại. Có 4! cách.
Theo quy tắc nhân, có 2. 4! = 48 cách.
b) Đầu tiên chọn 2 người đàn ông. Có \(C_4^2\) cách.
Xếp hai người đó ngồi cạnh nhau. Có 2 cách.
Sau đó xếp đứa trẻ vào giữa. Có 1 cách.
Xếp 4 người còn lại vào 4 ghế còn lại. Có 4! cách.
Vậy theo quy tắc nhân, có \(C_4^2.2.4! = 288\) cách.
Bài 2.6 trang 66 Sách bài tập (SBT) Đại số và giải tích 11
Ba quả cầu được đặt vào ba cái hộp khác nhau (không nhất thiết hộp nào cũng có quả cầu). Hỏi có bao nhiêu cách đặt,nếu:
a) Các quả cầu giống hệt nhau (không phân biệt) ?
b) Các quả cầu đôi một khác nhau ?
Giải:
a) Trong trường hợp này, số cách đặt bằng số các nghiệm \(\left( {{x_1},{x_2},{x_3}} \right)\) nguyên, không âm của phương trình \({x_1} + {x_2} + {x_3} = 3.\). Từ đó, đáp số cần tìm là \(C_5^2 = 10.\)
b) Quả thứ nhất có 3 cách đặt;
Quả thứ hai có 3 cách đặt;
Quả thứ ba có 3 cách đặt.
Vậy số cách đặt là \({3^3} = 27.\)
Bài 2.7 trang 66 Sách bài tập (SBT) Đại số và giải tích 11
Có bao nhiêu cách chia 10 người thành :
a) Hai nhóm, một nhóm 7 người, nhóm kia 3 người ?
b) Ba nhóm tương ứng gồm 5, 3, 2 người ?
Giải:
a) Chọn 7 người từ 10 người để lập một nhóm, ba người còn lại vào nhóm khác. Vậy số cách chia là \(C_{10}^7\)
b) Ba nhóm tương ứng gồm 5, 3, 2 người, sẽ có số cách chia là \(C_{10}^5.C_5^3\)
Bài 2.8 trang 67 Sách bài tập (SBT) Đại số và giải tích 11
Một giá sách bốn tầng xếp 40 quyển sách khác nhau, mỗi tầng xếp 10 quyển. Hỏi có bao nhiêu cách chọn các quyển sách sao cho từ mỗi tầng có:
a) Hai quyển sách ?
b) Tám quyển sách ?
Giải:
a) Có \(C_{10}^2\) cách chọn hai quyển từ tầng thứ k, k = 1, 2, 3, 4
Vậy có tất cả \({\left( {C_{10}^2} \right)^4}\) cách chọn.
b) Tương tự, có \({\left( {C_{10}^8} \right)^4} = {\left( {C_{10}^2} \right)^4}\) cách chọn.
Giaibaitap.me
Giải bài tập trang 67 bài 2 hoán vị - chỉnh hợp - tổ hợp Sách bài tập (SBT) Đại số và giải tích 11. Câu 2.9: Cô giáo chia 4 quả táo, 3 quả cam và 2 quả chuối cho 9 cháu (mỗi cháu một quả). Hỏi có bao nhiêu cách chia khác nhau ?...
Giải bài tập trang 67 bài 2 hoán vị - chỉnh hợp - tổ hợp Sách bài tập (SBT) Đại số và giải tích 11. Câu 2.13: Có bao nhiêu tập con của tập hợp gồm 4 điểm phân biệt ?...
Giải bài tập trang 67, 68 bài 2 hoán vị - chỉnh hợp - tổ hợp Sách bài tập (SBT) Đại số và giải tích 11. Câu 2.17: Một lớp có 50 học sinh. Tính số cách phân công 4 bạn quét sân trường và 5 bạn xén cây bằng hai phương pháp để rút ra đẳng thức...
Giải bài tập trang 69 bài 3 nhị thức Niu-tơn Sách bài tập (SBT) Đại số và giải tích 11. Câu 3.1: Tìm số hạng thứ năm trong khai triển \({\left( {x + {2 \over x}} \right)^{10}}\) mà trong khai triển đó số mũ của x giảm dần...