Bài 1 trang 126 Sách bài tập (SBT) Đại số và giải tích 11
Chứng minh rằng
a) \({n^5} - n\) chia hết cho 5 với mọi \(n \in N*\) ;
b) Tổng các lập phương của ba số tự nhiên liên tiếp chia hết cho 9 ;
c) \({n^3} - n\) chia hết cho 6 với mọi \(n \in N*\) ;
Giải:
a) HD: Xem ví dụ 1, .
b) HD: Đặt \({A_n} = {n^3} + {\left( {n + 1} \right)^3} + {\left( {n + 2} \right)^3}\) dễ thấy \({A_1} \vdots 9\)
Giả sử đã có \({A_1} \vdots 9\) với \(k \ge 1\). Ta phải chứng minh \({A_{k + 1}} \vdots 9\)
Tính \({A_{k + 1}} = {A_k} + 9{k^2} + 27k + 27\)
c) Làm tương tự như 1.a).
Bài 2 trang 127 Sách bài tập (SBT) Đại số và giải tích 11
Chứng minh các đẳng thức sau với n ∈ N*
a) \({A_n} = {1 \over {1.2.3}} + {1 \over {2.3.4}} + ... + {1 \over {n\left( {n + 1} \right)\left( {n + 2} \right)}} = {{n\left( {n + 3} \right)} \over {4\left( {n + 1} \right)\left( {n + 2} \right)}}\) ;
b) \({B_n} = 1 + 3 + 6 + 10 + ... + {{n\left( {n + 1} \right)} \over 2} = {{n\left( {n + 1} \right)\left( {n + 2} \right)} \over 6}\) ;
c) \({S_n} = \sin x + \sin 2x + \sin 3x + ... + \sin nx = {{\sin {{nx} \over 2}.\sin {{\left( {n + 1} \right)x} \over 2}} \over {\sin {x \over 2}}}\)
Giải:
a) HD: Kiểm tra với n = 1 sau đó biểu diễn
\({A_{k + 1}} = {A_k} + {1 \over {\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}\)
b) HD: Kiểm tra với n = 1
Giả sử đã cho \({B_k} = {{k\left( {k + 1} \right)\left( {k + 2} \right)} \over 2}\)
Ta cần chứng minh
\({B_{k + 1}} = {{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)} \over 2}\) bằng cách tính \({B_{k + 1}} = {B_k} + {{\left( {k + 1} \right)\left( {k + 2} \right)} \over 2}\)
c) HD: Kiểm tra với n = 1
Giả sử đã có \({S_k} = {{\sin {{kx} \over 2}.\sin {{\left( {k + 1} \right)} \over 2}x} \over {\sin {x \over 2}}}\)
Viết \({S_{k + 1}} = {S_k} + \sin \left( {k + 1} \right)x\) sử dụng giả thiết quy nạp và biến đổi ta có
\({S_{k + 1}} = {{\sin {{\left( {k + 1} \right)x} \over 2}.\sin {{\left( {k + 2} \right)} \over 2}x} \over {\sin {x \over 2}}}\left( {đpcm} \right)\)
Bài 3 trang 127 Sách bài tập (SBT) Đại số và giải tích 11
Chứng minh các bất đẳng thức sau
a) \({3^{n - 1}} > n\left( {n + 2} \right)\) với \(n \ge 4\) ;
b) \({2^{n - 3}} > 3n - 1\) với \(n \ge 8\)
Giải:
a) Với n = 4 thì \({3^{4 - 1}} = 27 > 4\left( {4 + 2} \right) = 24\)
Giả sử đã có
\({3^{k - 1}} > k\left( {k + 2} \right)\) với \(k \ge 4\) (1)
Nhân hai vế của (1) với 3, ta có
\(\eqalign{
& {3.3^{k - 1}} = {3^{\left( {k + 1} \right) - 1}} > 3k\left( {k + 2} \right) \cr
& {\rm{ = }}\left( {k + 1} \right)\left[ {\left( {k + 1} \right) + 2} \right] + 2{k^2} + 2k - 3 \cr} \)
Do \(2{k^2} + 2k - 3 > 0\) nên \({3^{\left( {k + 1} \right) - 1}} > \left( {k + 1} \right)\left[ {\left( {k + 1} \right) + 2} \right]\) chứng tỏ bất đẳng thức đúng với n = k + 1
b) Giải tương tự câu a).
Bài 4 trang 127 Sách bài tập (SBT) Đại số và giải tích 11
Cho dãy số \(\left( {{u_n}} \right) \) :
\({\rm{ }}\left\{ \matrix{
{u_1} = 1,{u_2} = 2 \hfill \cr
{u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 1{\rm\,\,{ với\,\, n}} \ge {\rm{2}} \hfill \cr} \right.\)
a) Viết năm số hạng đầu của dãy số ;
b) Lập dãy số \(\left( {{v_n}} \right) \) với \({v_n} = {u_{n + 1}} - {u_n}\). Chứng minh dãy số \(\left( {{v_n}} \right) \) là cấp số cộng ;
c) Tìm công thức tính \(\left( {{u_n}} \right) \) theo n.
Giải:
a) Năm số hạng đầu là 1, 2, 4, 7, 11
b) Từ công thức xác định dãy số ta có
\({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 1\) hay \({u_{n + 1}} - {u_n} = {u_n} - {u_{n - 1}} + 1\) (1)
Vì \({v_n} = {u_{n + 1}} - {u_n}\) nên từ (1), ta có
\({v_n} = {v_{n - 1}} + 1\) với \(n \ge 2\) (2)
Vậy \(\left( {{v_n}} \right) \) là cấp số cộng với \({v_1} = {u_2} - {u_1} = 1\) công sai d = 1
c) Để tính \(\left( {{u_n}} \right) \) ta viết
\(\eqalign{
& {v_1} = 1 \cr
& {v_2} = {u_3} - {u_2} \cr
& {v_3} = {u_4} - {u_3} \cr
& ... \cr
& {v_{n - 2}} = {u_{n - 1}} - {u_{n - 2}} \cr
& {v_{n - 1}} = {u_n} - {u_{n - 1}} \cr}\)
Cộng từng vế n - 1 hệ thức trên và rút gọn, ta được
\({v_1} + {v_2} + ... + {v_{n - 1}} = 1 - {u_2} + {u_n} = 1 - 2 + {u_n} = {u_{n - 1}}\) suy ra
\({u_n} = 1 + {v_1} + {v_2} + ... + {v_{n - 1}} = 1 + {{n\left( {n - 1} \right)} \over 2}\)
Giaibaitap.me
Giải bài tập trang 127, 128 bài ôn tập chương III Dãy số, cấp số cộng và cấp số nhân Sách bài tập (SBT) Đại số và giải tích 11. Câu 5: Cho dãy số...
Giải bài tập trang 128 bài ôn tập chương III Dãy số, cấp số cộng và cấp số nhân Sách bài tập (SBT) Đại số và giải tích 11. Câu 9: Cho cấp số nhân...
Giải bài tập trang 128 bài ôn tập chương III Dãy số, cấp số cộng và cấp số nhân Sách bài tập (SBT) Đại số và giải tích 11. Câu 12: Tính tổng...
Giải bài tập trang 128, 129 bài ôn tập chương III Dãy số, cấp số cộng và cấp số nhân Sách bài tập (SBT) Đại số và giải tích 11. Câu 14: Trong các dãy số...