Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.1 trên 8 phiếu

Giải sách bài tập Toán 8

CHƯƠNG III. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

Giải bài tập trang 16 bài ôn tập chương III - phương trình bậc nhất một ẩn Sách bài tập (SBT) Toán 8 tập 2. Câu 62: Hãy tìm các giá trị của m để hai biểu thức ấy có giá trị thỏa mãn hệ thức...

Câu 62 trang 16 Sách bài tập (SBT) Toán 8 tập 2

Cho hai biểu thức A = \({5 \over {2m + 1}}\) và B = \({4 \over {2m - 1}}\)

Hãy tìm các giá trị của m để hai biểu thức ấy có giá trị thỏa mãn hệ thức

a. 2A + 3B = 0

b. AB = A + B

Giải:

Ta có: A = \({5 \over {2m + 1}}\) và B = \({4 \over {2m - 1}}\)    ĐKXĐ: \(m \ne  \pm {1 \over 2}\)

a.

\(\eqalign{  & 2A + 3B = 0  \cr  &  \Leftrightarrow 2.{5 \over {2m + 1}} + 3.{4 \over {2m - 1}} = 0  \cr  &  \Leftrightarrow {{10} \over {2m + 1}} +{{12} \over {2m - 1}} = 0  \cr  &  \Leftrightarrow {{10\left( {2m - 1} \right)} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}} + {{12\left( {2m + 1} \right)} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}} = 0  \cr  &  \Leftrightarrow 10\left( {2m - 1} \right) + 12\left( {2m + 1} \right) = 0  \cr  &  \Leftrightarrow 20m - 10 + 24m + 12 = 0  \cr  &  \Leftrightarrow 44m + 2 = 0 \cr} \)

\( \Leftrightarrow m =  - {1 \over {22}}\) (thỏa mãn)

Vậy \(m =  - {1 \over {22}}\) thì 2A + 3B = 0

b. \(\eqalign{  & A.B = A + {\rm B}  \cr  &  \Rightarrow {5 \over {2m + 1}}.{4 \over {2m - 1}} = {5 \over {2m + 1}} + {4 \over {2m - 1}} \cr} \)

\(\eqalign{  &  \Leftrightarrow {{20} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}} = {{5\left( {2m - 1} \right)} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}} + {{4\left( {2m + 1} \right)} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}}  \cr  &  \Leftrightarrow 20 = 5\left( {2m - 1} \right) + 4\left( {2m + 1} \right)  \cr  &  \Leftrightarrow 20 = 10m - 5 + 8m + 4  \cr  &  \Leftrightarrow 18m = 21 \cr} \)

\( \Leftrightarrow m = {7 \over 6}\) (thỏa mãn)

Vậy \(m = {7 \over 6}\) thì A.B = A + B.


Câu 63 trang 16 Sách bài tập (SBT) Toán 8 tập 2

Tính gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ hai (dùng máy tính bỏ túi để tính toán)

a. \(\left( {x\sqrt {13}  + \sqrt 5 } \right)\left( {\sqrt 7  - x\sqrt 3 } \right) = 0\)

b. \(\left( {x\sqrt {2,7}  - 1,54} \right)\left( {\sqrt {1,02}  + x\sqrt {3,1} } \right) = 0\)

Giải:

a. \(\left( {x\sqrt {13}  + \sqrt 5 } \right)\left( {\sqrt 7  - x\sqrt 3 } \right) = 0\)

\( \Leftrightarrow x\sqrt {13}  + \sqrt 5  = 0\) hoặc \(\sqrt 7  - x\sqrt 3  = 0\)

+    \(x\sqrt {13}  + \sqrt 5  = 0 \Leftrightarrow x =  - {{\sqrt 5 } \over {\sqrt {13} }} \approx  - 0,62\)

+    \(\sqrt 7  - x\sqrt 3  = 0 \Leftrightarrow x = {{\sqrt 7 } \over {\sqrt 3 }} \approx 1,53\)

 Vậy phương trình có nghiệm x = -0,62 hoặc x = 1,53.

b. \(\left( {x\sqrt {2,7}  - 1,54} \right)\left( {\sqrt {1,02}  + x\sqrt {3,1} } \right) = 0\)

\( \Leftrightarrow x\sqrt {2,7}  - 1,54 = 0\) hoặc \(\sqrt {1,02}  + x\sqrt {3,1}  = 0\)

+     \(x\sqrt {2,7}  - 1,54 = 0 \Leftrightarrow x = {{1,54} \over {\sqrt {2,7} }} \approx 0,94\)

+      \(\sqrt {1.02}  + x\sqrt {3,1}  = 0 \Leftrightarrow x =  - {{\sqrt {1,02} } \over {\sqrt {3,1} }} \approx  - 0,57\)

 Vậy phương trình có nghiệm x = 0,94 hoặc x = -0,57

 


Câu 64 trang 16 Sách bài tập (SBT) Toán 8 tập 2

Giải các phương trình sau:

a. \({{9x - 0,7} \over 4} - {{5x - 1,5} \over 7} = {{7x - 1,1} \over 3} - {{5\left( {0,4 - 2x} \right)} \over 6}\)

b. \({{3x - 1} \over {x - 1}} - {{2x + 5} \over {x + 3}} = 1 - {4 \over {\left( {x - 1} \right)\left( {x + 3} \right)}}\)

c. \({3 \over {4\left( {x - 5} \right)}} + {{15} \over {50 - 2{x^2}}} =  - {7 \over {6\left( {x + 5} \right)}}\)

d. \({{8{x^2}} \over {3\left( {1 - 4{x^2}} \right)}} = {{2x} \over {6x - 3}} - {{1 + 8x} \over {4 + 8x}}\)

Giải:

a. \({{9x - 0,7} \over 4} - {{5x - 1,5} \over 7} = {{7x - 1,1} \over 3} - {{5\left( {0,4 - 2x} \right)} \over 6}\)

\( \Leftrightarrow {{21\left( {9x - 0,7} \right)} \over {84}} - {{12\left( {5x - 1,5} \right)} \over {84}}\) = \({{28\left( {7x - 1,1} \right)} \over {84}} - {{70\left( {0,4 - 2x} \right)} \over {84}}\)

\(\eqalign{  &  \Leftrightarrow 21\left( {9x - 0,7} \right) - 12\left( {5x - 1,5} \right) = 28\left( {7x - 1,1} \right) - 70\left( {0,4 - 2x} \right)  \cr  &  \Leftrightarrow 189x - 14,7 - 60x + 18 = 196x - 30,8 - 28 + 140x  \cr  &  \Leftrightarrow 189x - 60x - 196x - 140x =  - 30,8 - 28 + 14,7 - 18  \cr  &  \Leftrightarrow  - 207x =  - 62,1  \cr  &  \Leftrightarrow x = 0,3 \cr} \)

 Vậy phương trình có nghiệm x = 0,3

b. \({{3x - 1} \over {x - 1}} - {{2x + 5} \over {x + 3}} = 1 - {4 \over {\left( {x - 1} \right)\left( {x + 3} \right)}}\)                ĐKXĐ: \(x \ne 1\)và \(x \ne 3\)

\(\eqalign{  &  \Leftrightarrow {{\left( {3x - 1} \right)\left( {x + 3} \right)} \over {\left( {x - 1} \right)\left( {x + 3} \right)}} - {{\left( {2x + 5} \right)\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {x + 3} \right)}} = {{\left( {x - 1} \right)\left( {x + 3} \right)} \over {\left( {x - 1} \right)\left( {x + 3} \right)}} - {4 \over {\left( {x - 1} \right)\left( {x + 3} \right)}}  \cr  &  \Leftrightarrow \left( {3x - 1} \right)\left( {x + 3} \right) - \left( {2x + 5} \right)\left( {x - 1} \right) = \left( {x - 1} \right)\left( {x + 3} \right) - 4  \cr  &  \Leftrightarrow 3{x^2} + 9x - x - 3 - 2{x^2} + 2x - 5x + 5 = {x^2} + 3x - x - 3 - 4  \cr  &  \Leftrightarrow 3{x^2} - 2{x^2} - {x^2} + 9x - x + 2x - 5x - 3x + x =  - 3 - 4 + 3 - 5  \cr  &  \Leftrightarrow 3x =  - 9 \cr} \)

\( \Leftrightarrow x =  - 3\) (loại)

 Vậy phương trình vô nghiệm

c. \({3 \over {4\left( {x - 5} \right)}} + {{15} \over {50 - 2{x^2}}} =  - {7 \over {6\left( {x + 5} \right)}}\)                      ĐKXĐ: \(x \ne  \pm 5\)

\(\eqalign{  &  \Leftrightarrow {3 \over {4\left( {x - 5} \right)}} + {{15} \over {2\left( {25 - {x^2}} \right)}} =  - {7 \over {6\left( {x + 5} \right)}}  \cr  &  \Leftrightarrow {3 \over {4\left( {x - 5} \right)}} - {{15} \over {2\left( {x + 5} \right)\left( {x - 5} \right)}} =  - {7 \over {6\left( {x + 5} \right)}}  \cr  &  \Leftrightarrow {{9\left( {x + 5} \right)} \over {12\left( {x + 5} \right)\left( {x - 5} \right)}} - {{90} \over {12\left( {x + 5} \right)\left( {x - 5} \right)}} =  - {{14\left( {x - 5} \right)} \over {12\left( {x + 5} \right)\left( {x - 5} \right)}}  \cr  &  \Leftrightarrow 9\left( {x + 5} \right) - 90 =  - 14\left( {x - 5} \right)  \cr  &  \Leftrightarrow 9x + 45 - 90 =  - 14x + 70  \cr  &  \Leftrightarrow 9x + 14x = 70 - 45 + 90  \cr  &  \Leftrightarrow 23x = 115 \cr} \)

\( \Leftrightarrow x = 5\) (loại)

 Vậy phương trìnhvô nghiệm

d. \({{8{x^2}} \over {3\left( {1 - 4{x^2}} \right)}} = {{2x} \over {6x - 3}} - {{1 + 8x} \over {4 + 8x}}\)                  ĐKXĐ: \(x \ne  \pm {1 \over 2}\)

\(\eqalign{  &  \Leftrightarrow {{8{x^2}} \over {3\left( {1 - 2x} \right)\left( {1 + 2x} \right)}} = {{ - 2x} \over {3\left( {1 - 2x} \right)}} - {{1 + 8x} \over {4\left( {1 + 2x} \right)}}  \cr  &  \Leftrightarrow {{32{x^2}} \over {12\left( {1 - 2x} \right)\left( {1 + 2x} \right)}} = {{ - 8x\left( {1 + 2x} \right)} \over {12\left( {1 - 2x} \right)\left( {1 + 2x} \right)}} - {{3\left( {1 + 8x} \right)\left( {1 - 2x} \right)} \over {12\left( {1 - 2x} \right)\left( {1 + 2x} \right)}}  \cr  &  \Leftrightarrow 32{x^2} =  - 8x - 16{x^2} - 3\left( {1 - 2x + 8x - 16{x^2}} \right)  \cr  &  \Leftrightarrow 32{x^2} =  - 8x - 16{x^2} - 3 - 18x + 48{x^2}  \cr  &  \Leftrightarrow 32{x^2} + 16{x^2} - 48{x^2} + 18x + 8x =  - 3  \cr  &  \Leftrightarrow 26x =  - 3 \cr} \)

\( \Leftrightarrow x =  - {3 \over {26}}\) (thỏa mãn)

 Vậy phương trình có nghiệm \(x =  - {3 \over {26}}\)


Câu 65 trang16 Sách bài tập (SBT) Toán 8 tập 2

Cho phương trình (ẩn x): \(4{x^2} - 25 + {k^2} + 4kx = 0\)

a. Giải phương trình với k = 0

b. Giải phương trình với k = -3

c. Tìm các giá trị của k sao cho phương trình nhận x = -2 làm nghiệm

Giải:

a. Khi k = 0 ta có phương trình:

\(4{x^2} - 25 = 0\)

\( \Leftrightarrow \left( {2x + 5} \right)\left( {2x - 5} \right) = 0\)

\( \Leftrightarrow 2x + 5 = 0\) hoặc \(2x - 5 = 0\)

+     \(2x + 5 = 0 \Leftrightarrow x =  - {5 \over 2}\)

+     \(2x - 5 = 0 \Leftrightarrow x = {5 \over 2}\)

 Vậy phương trình có nghiệm \(x =  - {5 \over 2}\) hoặc \(x = {5 \over 2}\)

b. Khi k = -3 ta có phương trình:

\(4{x^2} - 25 + {\left( { - 3} \right)^2} + 4\left( { - 3} \right)x = 0\)

\(\eqalign{  &  \Leftrightarrow 4{x^2} - 25 + 9 - 12x = 0  \cr  &  \Leftrightarrow 4{x^2} - 12x - 16 = 0  \cr  &  \Leftrightarrow {x^2} - 3x - 4 = 0  \cr  &  \Leftrightarrow {x^2} - 4x + x - 4 = 0  \cr  &  \Leftrightarrow x\left( {x - 4} \right) + \left( {x - 4} \right) = 0  \cr  &  \Leftrightarrow \left( {x + 1} \right)\left( {x - 4} \right) = 0 \cr} \)

\( \Leftrightarrow x + 1 = 0\) hoặc \(x - 4 = 0\)

+   \(x + 1 = 0 \Leftrightarrow x =  - 1\)

+    \(x - 4 = 0 \Leftrightarrow x = 4\)

 Vậy phương trình có nghiệm x = -1 hoặc x = 4

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác