Câu 41 trang 13 Sách bài tập (SBT) Toán 8 tập 2
Giải các phương trình sau:
a. \({{2x + 1} \over {x - 1}} = {{5\left( {x - 1} \right)} \over {x + 1}}\)
b. \({{x - 3} \over {x - 2}} + {{x - 2} \over {x - 4}} = - 1\)
c. \({1 \over {x - 1}} + {{2{x^2} - 5} \over {{x^3} - 1}} = {4 \over {{x^2} + x + 1}}\)
d. \({{13} \over {\left( {x - 3} \right)\left( {2x + 7} \right)}} + {1 \over {2x + 7}} = {6 \over {{x^2} - 9}}\)
Giải:
a. \({{2x + 1} \over {x - 1}} = {{5\left( {x - 1} \right)} \over {x + 1}}$ ĐKXĐ:
\(\eqalign{ & \Leftrightarrow {{\left( {2x + 1} \right)\left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} = {{5\left( {x - 1} \right)\left( {x - 1} \right)} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} \cr & \Leftrightarrow \left( {2x + 1} \right)\left( {x + 1} \right) = 5\left( {x - 1} \right)\left( {x - 1} \right) \cr & \Leftrightarrow 2{x^2} + 2x + x + 1 = 5{x^2} - 10x + 5 \cr & \Leftrightarrow 2{x^2} - 5{x^2} + 2x + x + 10x + 1 - 5 = 0 \cr & \Leftrightarrow - 3{x^2} + 13x - 4 = 0 \cr & \Leftrightarrow 3{x^2} - x - 12x + 4 = 0 \cr & \Leftrightarrow x\left( {3x - 1} \right) - 4\left( {3x - 1} \right) = 0 \cr & \Leftrightarrow \left( {3x - 1} \right)\left( {x - 4} \right) = 0 \cr} \)
\( \Leftrightarrow x - 4 = 0\) hoặc \(3x - 1 = 0\)
+) \(x - 4 = 0 \Leftrightarrow x = 4\) (thỏa mãn)
+) \(3x - 1 = 0 \Leftrightarrow x = {1 \over 3}\) (thỏa mãn)
Vậy phương trình có nghiệm x = 4 hoặc \(x = {1 \over 3}\)
b. \({{x - 3} \over {x - 2}} + {{x - 2} \over {x - 4}} = - 1\) ĐKXĐ: \(x \ne 2\)và \(x \ne 4\)
\(\eqalign{ & \Leftrightarrow {{\left( {x - 3} \right)\left( {x - 4} \right)} \over {\left( {x - 2} \right)\left( {x - 4} \right)}} + {{\left( {x - 2} \right)\left( {x - 2} \right)} \over {\left( {x - 2} \right)\left( {x - 4} \right)}} = - {{\left( {x - 2} \right)\left( {x - 4} \right)} \over {\left( {x - 2} \right)\left( {x - 4} \right)}} \cr & \Leftrightarrow \left( {x - 3} \right)\left( {x - 4} \right) + \left( {x - 2} \right)\left( {x - 2} \right) = - \left( {x - 2} \right)\left( {x - 4} \right) \cr & \Leftrightarrow {x^2} - 4x - 3x + 12 + {x^2} - 2x - 2x + 4 = - {x^2} + 4x + 2x - 8 \cr & \Leftrightarrow 3{x^2} - 17x + 24 = 0 \cr & \Leftrightarrow 3{x^2} - 9x - 8x + 24 = 0 \cr & \Leftrightarrow 3x\left( {x - 3} \right) - 8\left( {x - 3} \right) = 0 \cr & \Leftrightarrow \left( {3x - 8} \right)\left( {x - 3} \right) = 0 \cr} \)
\( \Leftrightarrow 3x - 8 = 0\) hoặc \(x - 3 = 0\)
+ \(3x - 8 = 0 \Leftrightarrow x = {8 \over 3}\) (thỏa mãn)
+ \(x - 3 = 0 \Leftrightarrow x = 3\) (thỏa mãn)
Vậy phương trình có nghiệm \(x = {8 \over 3}\) hoặc x = 3
c. \({1 \over {x - 1}} + {{2{x^2} - 5} \over {{x^3} - 1}} = {4 \over {{x^2} + x + 1}}\)
ĐKXĐ: \(x \ne 1\)
\(\eqalign{ & \Leftrightarrow {{{x^2} + x + 1} \over {{x^3} - 1}} + {{2{x^2} - 5} \over {{x^3} - 1}} = {{4\left( {x - 1} \right)} \over {{x^3} - 1}} \cr & \Leftrightarrow {x^2} + x + 1 + 2{x^2} - 5 = 4\left( {x - 1} \right) \cr & \Leftrightarrow {x^2} + x + 1 + 2{x^2} - 5 = 4x - 4 \cr & \Leftrightarrow {x^2} + 2{x^2} + x - 4x = - 4 + 5 - 1 \cr & \Leftrightarrow 3{x^2} - 3x = 0 \cr & \Leftrightarrow 3x\left( {x - 1} \right) = 0 \cr} \)
\( \Leftrightarrow x = 0\) (thỏa) hoặc \(x - 1 = 0 \Leftrightarrow x = 1\) (loại)
Vậy phương trình có nghiệm x = 0
d. \({{13} \over {\left( {x - 3} \right)\left( {2x + 7} \right)}} + {1 \over {2x + 7}} = {6 \over {{x^2} - 9}}\) ĐKXĐ: \(x \ne \pm 3\) và \(x = - {7 \over 2}\)
\(\eqalign{ & \Leftrightarrow {{13\left( {x + 3} \right)} \over {\left( {{x^2} - 9} \right)\left( {2x + 7} \right)}} + {{{x^2} - 9} \over {\left( {{x^2} - 9} \right)\left( {2x + 7} \right)}} = {{6\left( {2x + 7} \right)} \over {\left( {{x^2} - 9} \right)\left( {2x + 7} \right)}} \cr & \Leftrightarrow 13\left( {x + 3} \right) + {x^2} - 9 = 6\left( {2x + 7} \right) \cr & \Leftrightarrow 13x + 39 + {x^2} - 9 = 12x + 42 \cr & \Leftrightarrow {x^2} + x - 12 = 0 \cr & \Leftrightarrow {x^2} - 3x + 4x - 12 = 0 \cr & \Leftrightarrow x\left( {x - 3} \right) + 4\left( {x - 3} \right) = 0 \cr & \Leftrightarrow \left( {x + 4} \right)\left( {x - 3} \right) = 0 \cr} \)
\( \Leftrightarrow x + 4 = 0\) hoặc \(x - 3 = 0\)
+ \(x + 4 = 0 \Leftrightarrow x = - 4\) (thỏa mãn)
+ \(x - 3 = 0 \Leftrightarrow x = 3\) (loại)
Vậy phương trình có nghiệm x = -4
Câu 42 trang 13 Sách bài tập (SBT) Toán 8 tập 2
Cho phương trình ẩn:
\({{x + a} \over {a - x}} + {{x - a} \over {a + x}} = {{a\left( {3a + 1} \right)} \over {{a^2} - {x^2}}}\)
a. Giải phương trình với a = -3
b. Giải phương trình với a = 1
c. Giải phương trình với a = 0
d. Tìm các giá trị của a sao cho phương trình nhận \(x = {1 \over 2}\) làm nghiệm.
Giải:
a. Khi a = -3, ta có phương trình:
\({{x - 3} \over { - 3 - x}} + {{x + 3} \over { - 3 + x}} = {{ - 3\left[ {3\left( { - 3} \right) + 1} \right]} \over {{{\left( { - 3} \right)}^2} - {x^2}}}\) ĐKXĐ: \(x \ne \pm 3\)
\(\eqalign{ & \Leftrightarrow {{3 - x} \over {x + 3}} + {{x + 3} \over {x - 3}} = {{24} \over {9 - {x^2}}} \cr & \Leftrightarrow {{3 - x} \over {x + 3}} - {{x + 3} \over {x - 3}} = - {{24} \over {{x^2} - 9}} \cr & \Leftrightarrow {{\left( {3 - x} \right)\left( {x - 3} \right)} \over {{x^2} - 9}} - {{\left( {x + 3} \right)\left( {x + 3} \right)} \over {{x^2} - 9}} = - {{24} \over {{x^2} - 9}} \cr & \Leftrightarrow \left( {3 - x} \right)\left( {x - 3} \right) - {\left( {x + 3} \right)^3} = - 24 \cr & \Leftrightarrow 3x - 9 - {x^2} + 3x + {x^2} + 6x + 9 = - 24 \cr & \Leftrightarrow 12x = - 24 \cr} \)
\( \Leftrightarrow x = - 2\) (thỏa)
Vậy phương trình có nghiệm x = -2
b. Khi a = 1, ta có phương trình:
\({{x + 1} \over {1 - x}} + {{x - 1} \over {1 + x}} = {{1\left( {3.1 + 1} \right)} \over {{1^2} - {x^2}}}\) ĐKXĐ: \(x \ne \pm 1\)
\(\eqalign{ & \Leftrightarrow {{x + 1} \over {1 - x}} + {{x - 1} \over {1 + x}} = {4 \over {1 - {x^2}}} \cr & \Leftrightarrow {{{{\left( {x + 1} \right)}^2}} \over {1 - {x^2}}} + {{\left( {x - 1} \right)\left( {1 - x} \right)} \over {1 - {x^2}}} = {4 \over {1 - {x^2}}} \cr & \Leftrightarrow {\left( {x + 1} \right)^2} + \left( {x - 1} \right)\left( {1 - x} \right) = 4 \cr & \Leftrightarrow {x^2} + 2x + 1 + x - {x^2} - 1 + x = 4 \cr & \Leftrightarrow 4x = 4 \cr} \)
\( \Leftrightarrow x = 1\) (loại)
Vậy phương trình vô nghiệm.
c. Khi a = 0, ta có phương trình: \({x \over { - x}} + {x \over x} = {0 \over {{x^2}}}\)
ĐKXĐ: \(x \ne 0\)
\(\eqalign{ & \Leftrightarrow {{ - {x^2}} \over {{x^2}}} + {{{x^2}} \over {{x^2}}} = {0 \over {{x^2}}} \cr & \Leftrightarrow - {x^2} + {x^2} = 0 \Leftrightarrow 0x = 0 \cr} \)
Phương trình có nghiệm đúng với mọi giá trị của \(x \ne 0\)
Vậy phương trình có nghiệm \(x \in R/x \ne 0\)
d. Thay \(x = {1 \over 2}\) vào phương trình, ta có:
\({{{1 \over 2} + a} \over {a - {1 \over 2}}} + {{{1 \over 2} - a} \over {a + {1 \over 2}}} = {{a\left( {3a + 1} \right)} \over {{a^2} - {{\left( {{1 \over 2}} \right)}^2}}}\) ĐKXĐ: \(x \ne \pm {1 \over 2}\)
\(\eqalign{ & \Leftrightarrow {{{1 \over 2} + a} \over {a - {1 \over 2}}} + {{{1 \over 2} - a} \over {a + {1 \over 2}}} = {{a\left( {3a + 1} \right)} \over {{a^2} - {1 \over 4}}} \cr & \Leftrightarrow {{1 + 2a} \over {2a - 1}} + {{1 - 2a} \over {2a + 1}} = {{4a\left( {3a + 1} \right)} \over {4{a^2} - 1}} \cr & \Leftrightarrow {{\left( {1 + 2a} \right)\left( {2a + 1} \right)} \over {4{a^2} - 1}} + {{\left( {1 - 2a} \right)\left( {2a - 1} \right)} \over {4{a^2} - 1}} = {{4a\left( {3a + 1} \right)} \over {4{a^2} - 1}} \cr & \Leftrightarrow \left( {1 + 2a} \right)\left( {2a + 1} \right) + \left( {1 - 2a} \right)\left( {2a - 1} \right) = 4a\left( {3a + 1} \right) \cr & \Leftrightarrow 2a + 1 + 4{a^2} + 2a + 2a - 1 - 4{a^2} + 2a = 12{a^2} + 4a \cr & \Leftrightarrow 12{a^2} - 4a = 0 \cr & \Leftrightarrow 4a\left( {3a - 1} \right) = 0 \cr} \)
\( \Leftrightarrow 4a = 0\) hoặc \(3a - 1 = 0\)
\( \Leftrightarrow a = 0\) (thỏa) hoặc \(a = {1 \over 3}\) (thỏa)
Vậy khi a = 0 hoặc \(a = {1 \over 3}\) thì phương trình \({{x + a} \over {a - x}} + {{x - a} \over {a + x}} = {{a\left( {3a + 1} \right)} \over {{a^2} - {x^2}}}\) nhận \(x = {1 \over 2}\) làm nghiệm.
Câu 5.1* trang 13 Sách bài tập (SBT) Toán 8 tập 2
Giải các phương trình
a. \({2 \over {x + {1 \over {1 + {{x + 1} \over {x - 2}}}}}} = {6 \over {3x - 1}}\)
b. \({{{{x + 1} \over {x - 1}} - {{x - 1} \over {x + 1}}} \over {1 + {{x + 1} \over {x - 1}}}} = {{x - 1} \over {2\left( {x + 1} \right)}}\)
c. \({5 \over x} + {4 \over {x + 1}} = {3 \over {x + 2}} + {2 \over {x + 3}}\)
Giải:
a. Ta có: \(x + {1 \over {1 + {{x + 1} \over {x - 2}}}} = x + {{x - 2} \over {2x - 1}} = {{2\left( {{x^2} - 1} \right)} \over {2x - 1}}\)
ĐKXĐ của phương trình là \(x \ne 2,x \ne {1 \over 2},x \ne \pm 1,x \ne {1 \over 3}\). Ta biến đổi phương trình đã cho thành
\({{2x - 1} \over {{x^2} - 1}} = {6 \over {3x - 1}}\). Khử mẫu và rút gọn:
\(\eqalign{ & \left( {2x - 1} \right)\left( {3x - 1} \right) = 6\left( {{x^2} - 1} \right) \cr & \Leftrightarrow - 5x + 1 = - 6 \cr & \Leftrightarrow x = {7 \over 5} \cr} \)
Giá trị \(x = {7 \over 5}\) thỏa mãn ĐKXĐ. Vậy phương trình có nghiệm là \(x = {7 \over 5}\)
b. Cách 1. ĐKXĐ: \(x \ne \pm 1\). Biến đổi vế trái thành \({{4x} \over {{x^2} - 1}}.{{x - 1} \over {2x}} = {2 \over {x + 1}}\), ta đưa phương trình đã cho về dạng \({2 \over {x + 1}} = {{x - 1} \over {2\left( {x + 1} \right)}}\).
Giải phương trình này bằng cách khử mẫu:
\(\eqalign{ & 4\left( {x + 1} \right) = \left( {x - 1} \right)\left( {x + 1} \right) \cr & \Leftrightarrow \left( {x + 1} \right)\left( {x - 5} \right) = 0 \cr} \)
\( \Leftrightarrow x = - 1\) hoặc \(x = 5\)
Trong hai giá trị vừa tìm được, chỉ có x = 5 là thỏa mãn ĐKXĐ. Vậy phương trình đã cho có một nghiệm duy nhất x = 5.
Cách 2. Đặt \({{x + 1} \over {x - 1}} = y\), ta có phương trình \({{y - {1 \over y}} \over {1 + y}} = {1 \over {2y}}\). ĐKXĐ của phương trình này là \(y \ne 0\) và \(y \ne - 1\). Giải phương trình này bằng cách khử mẫu:
\(\eqalign{ & 2{y^2} - 2 = 1 + y \cr & \Leftrightarrow 2\left( {{y^2} - 1} \right) - \left( {y + 1} \right) = 0 \cr & \Leftrightarrow \left( {y + 1} \right)\left( {2y - 3} \right) = 0 \cr} \)
\( \Leftrightarrow y = - 1\) hoặc \(y = {3 \over 2}\)
Trong hai giá trị tìm được, chỉ có \(y = {3 \over 2}\) là thỏa mãn ĐKXĐ
Vậy phương trình đã cho tương đương với phương trình \({{x + 1} \over {x - 1}} = {3 \over 2}\)
Giải phương trình này ta được x = 5
c. ĐKXĐ: \(x \in \left\{ {0; - 1; - 2; - 3} \right\}\). Ta biến đổi phương trình như sau:
\(\eqalign{ & {5 \over x} + {2 \over {x + 3}} = {4 \over {x + 1}} + {3 \over {x + 2}} \cr & \Leftrightarrow \left( {{5 \over x} + 1} \right) + \left( {{2 \over {x + 3}} + 1} \right) = \left( {{4 \over {x + 1}} + 1} \right) + \left( {{3 \over {x + 2}} + 1} \right) \cr & \Leftrightarrow {{5 + x} \over x} + {{5 + x} \over {x + 3}} = {{5 + x} \over {x + 1}} + {{5 + x} \over {x + 2}} \cr & \Leftrightarrow \left( {5 + x} \right)\left( {{1 \over x} + {1 \over {x + 3}} - {1 \over {x + 1}} - {1 \over {x + 2}}} \right) = 0 \cr & \Leftrightarrow 5 + x = 0(1) \cr} \)
hoặc \({1 \over x} + {1 \over {x + 3}} - {1 \over {x + 1}} - {1 \over {x + 2}} = 0\) (2)
Ta có:
(1) \( \Leftrightarrow x = - 5\)
(2) \(\eqalign{ & \Leftrightarrow {1 \over x} + {1 \over {x + 3}} = {1 \over {x + 1}} + {1 \over {x + 2}} \cr & \Leftrightarrow {{2x + 3} \over {x\left( {x + 3} \right)}} = {{2x + 3} \over {\left( {x + 1} \right)\left( {x + 2} \right)}} \cr & \Leftrightarrow \left( {2x + 3} \right)\left( {{1 \over {{x^2} + 3x}} - {1 \over {{x^2} + 3x + 2}}} \right) = 0 \cr} \)
\( \Leftrightarrow 2x + 3 = 0\) hoặc \({1 \over {{x^2} + 3x}} - {1 \over {{x^2} + 3x + 2}} = 0\)
+ \(2x + 3 = 0 \Leftrightarrow x = - {3 \over 2}\)
+ \({1 \over {{x^2} + 3x}} - {1 \over {{x^2} + 3x + 2}} = 0\). Dễ thấy phương trình này vô nghiệm.
Tóm lại, phương trình đã cho có tập nghiệm là S = \(\left\{ { - 5; - {3 \over 2}} \right\}\)
Giaibaitap.me
Giải bài tập trang 14 bài 6, 7 giải toán bằng cách lập phương trình Sách bài tập (SBT) Toán 8 tập 2. Câu 43: Tổng của hai số bằng 80, hiệu của chúng bằng 14. Tìm hai số đó....
Giải bài tập trang 14 bài 6, 7 giải toán bằng cách lập phương trình Sách bài tập (SBT) Toán 8 tập 2. Câu 47: Hai số nguyên dương có tỉ số giữa số thứ nhất và số thứ hai bằng...
Giải bài tập trang 15 bài 6, 7 giải toán bằng cách lập phương trình Sách bài tập (SBT) Toán 8 tập 2. Câu 51: Trong một buổi lao động, lớp 8A gồm 40 học sinh thành hai tốp: tốp thứ nhất trồng cây và tốp thứ hai làm vệ sinh...
Giải bài tập trang 15 bài 6, 7 giải toán bằng cách lập phương trình Sách bài tập (SBT) Toán 8 tập 2. Câu 55: Một số thập phân có phần nguyên là số có một chữ số...