Câu 19 trang 7 Sách bài tập (SBT) Toán 8 tập 1
Tìm giá trị nhỏ nhất của các đa thức:
a. P\( = {x^2} - 2x + 5\)
b. Q\( = 2{x^2} - 6x\)
c. M\( = {x^2} + {y^2} - x + 6y + 10\)
Giải:
a. P\(= {x^2} - 2x + 5)\\( = {x^2} - 2x + 1 + 4 = {\left( {x - 1} \right)^2} + 4\)
Ta có:
\({\left( {x - 1} \right)^2} \ge 0 \Rightarrow {\left( {x - 1} \right)^2} + 4 \ge 4\)
\( \Rightarrow P = {x^2} - 2x + 5 = {\left( {x - 1} \right)^2} + 4 \ge 4\)
\( \Rightarrow P = 4\) là giá trị bé nhất ⇒ \({\left( {x - 1} \right)^2} = 0 \Rightarrow x = 1\)
Vậy P=4 là giá trị bé nhất của đa thức khi
b. Q\( = 2{x^2} - 6x\)\( = 2\left( {{x^2} - 3x} \right) = 2\left( {{x^2} - 2.{3 \over 2}x + {9 \over 4} - {9 \over 4}} \right)\)
\( = 2\left[ {{{\left( {x - {2 \over 3}} \right)}^2} - {9 \over 4}} \right] = 2{\left( {x - {2 \over 3}} \right)^2} - {9 \over 2}\)
Ta có: \({\left( {x - {2 \over 3}} \right)^2} \ge 0 \Rightarrow 2{\left( {x - {2 \over 3}} \right)^2} \ge 0 \Rightarrow 2{\left( {x - {2 \over 3}} \right)^2} - {9 \over 2} \ge - {9 \over 2}\)
\( \Rightarrow Q = - {9 \over 2}\) là giá trị nhỏ nhất \( \Rightarrow {\left( {x - {2 \over 3}} \right)^2} = 0 \Rightarrow x = {2 \over 3}\)
Vậy \(Q = - {9 \over 2}\) là giá trị bé nhất của đa thức \(x = {2 \over 3}\)
c.
\(\eqalign{ & M = {x^2} + {y^2} - x + 6y + 10 = \left( {{y^2} + 6y + 9} \right) + \left( {{x^2} - x + 1} \right) \cr & = {\left( {y + 3} \right)^2} + \left( {{x^2} - 2.{1 \over 2}x + {1 \over 4} + {3 \over 4}} \right) = {\left( {y + 3} \right)^2} + {\left( {x - {1 \over 2}} \right)^2} + {3 \over 4} \cr} \)
Ta có:
\(\eqalign{ & {\left( {y + 3} \right)^2} \ge 0;{\left( {x - {1 \over 2}} \right)^2} \ge 0 \cr & \Rightarrow {\left( {y + 3} \right)^2} + {\left( {x - {1 \over 2}} \right)^2} \ge 0 \Rightarrow {\left( {y + 3} \right)^2} + {\left( {x - {1 \over 2}} \right)^2} + {3 \over 4} \ge {3 \over 4} \cr} \)
\( \Rightarrow M = {3 \over 4}\) là giá trị nhỏ nhất khi \({\left( {y + 3} \right)^2} = 0\)
\( \Rightarrow y = - 3\) và \({\left( {x - {1 \over 2}} \right)^2} = 0 \Rightarrow x = {1 \over 2}\)
Vậy \(M = {3 \over 4}\) là giá trị bé nhất tại \(y = - 3\) và \(x = {1 \over 2}\)
Câu 20 trang 7 Sách bài tập (SBT) Toán 8 tập 1
Tìm giá trị lớn nhất của các đa thức:
a. \(A = 4x - {x^2} + 3\)
b. \(B = x - {x^2}\)
c. \(N = 2x - 2{x^2} - 5\)
Giải:
a. \(A = 4x - {x^2} + 3 = 7 - {x^2} + 4x - 4 = 7 - \left( {{x^2} - 4x + 4} \right) = 7 - {\left( {x - 2} \right)^2}\)
Ta có: \({\left( {x - 2} \right)^2} \ge 0\)
Suy ra: \(A = 7 - {\left( {x - 2} \right)^2} \le 7\)
Vậy giá trị của A lớn nhất là 7 tại \(x = 2\)
b. \(B = x - {x^2})\\( = {1 \over 4} - {x^2} + x - {1 \over 4} = {1 \over 4} - \left( {{x^2} - 2.x.{1 \over 2} + {1 \over 4}} \right) = {1 \over 4} - {\left( {x - {1 \over 2}} \right)^2}\)
Vì \({\left( {x - {1 \over 2}} \right)^2} \ge 0\) . Suy ra: \(B = {1 \over 4} - {\left( {x - {1 \over 2}} \right)^2} \le {1 \over 4}\)
Vậy giá trị lớn nhất của biểu thức B là \({1 \over 4}\) tại \(x = {1 \over 2}\)
c. \(N = 2x - 2{x^2} – 5\) \( = - 2\left( {{x^2} - x + {5 \over 2}} \right) = - 2\left( {{x^2} - 2.x.{1 \over 2} + {1 \over 4} + {9 \over 4}} \right)\)
\( = - 2\left[ {{{\left( {x - {1 \over 2}} \right)}^2} + {9 \over 4}} \right] = - 2{\left( {x - {1 \over 2}} \right)^2} - {9 \over 2}\)
Vì\({\left( {x - {1 \over 2}} \right)^2} \ge 0\) nên\( - 2{\left( {x - {1 \over 2}} \right)^2} \le 0\)
Suy ra: \(N = - 2{\left( {x - {1 \over 2}} \right)^2} - {9 \over 2} \le - {9 \over 2}\)
Vậy giá trị lớn nhất của biểu thức N là \( - {9 \over 2}\) tại \(x = {1 \over 2}\)
Câu 3.1 trang 8 Sách bài tập (SBT) Toán 8 tập 1
Cho \({x^2} + {y^2} = 26\) và\(xy = 5\) giá trị của\({\left( {x - y} \right)^2}\) là:
A. 4
B. 16
C. 21
D. 36
Giải:
Chọn B. 16
Giaibaitap.me
Giải bài tập trang 7 bài 3, 4, 5 những hằng đẳng thức đáng nhớ Sách bài tập (SBT) Toán 8 tập 1. Câu 15: Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng...
Giải bài tập trang 8 bài 3, 4, 5 những hằng đẳng thức đáng nhớ Sách bài tập (SBT) Toán 8 tập 1. Câu 3.2: Kết quả của tích...
Giải bài tập trang 8 bài 6 phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung Sách bài tập (SBT) Toán 8 tập 1. Câu 21: Hãy chọn kết quả đúng...
Giải bài tập trang 8, 9 bài 6 phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung Sách bài tập (SBT) Toán 8 tập 1. Câu 25: Chứng minh rằng...