Bài 5 trang 133 sgk đại số 11
Cho hàm số \(f(x) = \frac{x+2}{x^{2}-9}\) có đồ thị như trên hình 53.
a) Quan sát đồ thị và nêu nhận xét về giá trị hàm số đã cho khi \(x → -∞\), \(x → 3^-\) và \(x → -3^+\)
b) Kiểm tra các nhận xét trên bằng cách tính các giới hạn sau:
\(\underset{x\rightarrow -\infty }{\lim} f(x)\) với \(f(x)\) được xét trên khoảng \((-\infty; -3)\),
\(\underset{x\rightarrow 3^{-}}{\lim} f(x)\) với \(f(x)\) được xét trên khoảng \((-3,3)\),
\(\underset{x\rightarrow -3^{+}}{lim} f(x)\) với \(f(x)\) được xét trên khoảng \((-3; 3)\).
Hướng dẫn giải
a) Quan sát đồ thị ta thấy \(x → -∞\) thì \(f(x) → 0\); khi \(x → 3^-\) thì \(f(x) → -∞\);
khi \(x → -3^+\) thì \(f(x) → +∞\).
b) \(\underset{x\rightarrow -\infty }{lim} f(x) = \underset{x\rightarrow -\infty }{lim}\) \(\frac{x+2}{x^{2}-9}\) = \(\underset{x\rightarrow -\infty }{lim}\) \(\frac{\frac{1}{x}+\frac{2}{x^{2}}}{1-\frac{9}{x^{2}}} = 0\).
\(\underset{x\rightarrow 3^{-}}{lim} f(x) = \underset{x\rightarrow 3^{-}}{lim}\)\(\frac{x+2}{x^{2}-9}\) = \(\underset{x\rightarrow 3^{-}}{lim}\)\(\frac{x+2}{x+3}.\frac{1}{x-3} = -∞ \) vì \(\underset{x\rightarrow 3^{-}}{lim}\)\(\frac{x+2}{x+3}\) = \(\frac{5}{6} > 0\) và \(\underset{x\rightarrow 3^{-}}{\lim} \frac{1}{x-3} = -∞\).
\(\underset{x\rightarrow -3^{+}}{lim} f(x) =\) \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{x+2}{x^{2}-9}\) = \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{x+2}{x-3}\) . \(\frac{1}{x+3} = +∞\)
vì \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{x+2}{x-3}\) = \(\frac{-1}{-6}\) = \(\frac{1}{6} > 0\) và \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{1}{x+3} = +∞\).
Bài 6 trang 133 sgk đại số 11
Tính:
\(\eqalign{
& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} - {x^2} + x - 1) \cr
& b)\mathop {\lim }\limits_{x \to - \infty } ( - 2{x^3} + 3{x^2} - 5) \cr
& c)\mathop {\lim }\limits_{x \to - \infty } (\sqrt {{x^2} - 2x + 5}) \cr
& d)\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} + 1} + x} \over {5 - 2x}} \cr} \)
Giải:
\(\eqalign{
& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} - {x^2} + x - 1) = \mathop {\lim }\limits_{x \to + \infty } {x^4}\left( {1 - {1 \over {{x^2}}} + {1 \over {{x^3}}} - {1 \over {{x^4}}}} \right) = + \infty \cr
& b)\mathop {\lim }\limits_{x \to - \infty } ( - 2{x^3} + 3{x^2} - 5) = \mathop {\lim }\limits_{x \to - \infty } {x^3}\left( { - 2 + {1 \over x} - {5 \over {{x^2}}}} \right) = + \infty \cr
& c)\mathop {\lim }\limits_{x \to - \infty } (\sqrt {{x^2} - 2x + 5} ) = \mathop {\lim }\limits_{x \to - \infty } |x|\sqrt {1 - {2 \over x} + {5 \over {{x^2}}}} = + \infty \cr
& d)\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} + 1} + x} \over {5 - 2x}} = \mathop {\lim }\limits_{x \to + \infty } {{x\left( {\sqrt {1 + {1 \over {{x^2}}}} + 1} \right)} \over {5 - 2x}} = \mathop {\lim }\limits_{x \to + \infty } {{\left( {\sqrt {1 + {1 \over {{x^2}}}} + 1} \right)} \over {{5 \over x} - 2}} = - 1 \cr} \)
Bài 7 trang 133 sgk đại số 11
Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ một vật thật \(AB\) và từ ảnh \(A'B'\) của nó tới quang tâm \(O\) của thấu kính (h.54). Công thức thấu kính là \(\frac{1}{d}+\frac{1}{d'}=\frac{1}{f}.\)
a) Tìm biểu thức xác định hàm số \(d' = φ(d)\).
b) Tìm \(\underset{d\rightarrow f^{+} }{\lim} φ(d)\), \(\underset{d\rightarrow f^{-} }{\lim} φ(d)\) và \(\underset{d\rightarrow +\infty }{\lim} φ(d)\). Giải thích ý nghĩa của các kết quả tìm được.
Giải:
a) Từ hệ thức \(\frac{1}{d}+\frac{1}{d'}=\frac{1}{f}.\)suy ra \(d' = φ(d) = \frac{fd}{d-f}\).
b)
+) \(\underset{d\rightarrow f^{+} }{lim} φ(d) = \underset{d\rightarrow f^{+} }{lim}\) \(\frac{fd}{d-f}= +∞\) .
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn lớn hơn f thì ảnh của nó dần tới dương vô cực.
+) \(\underset{d\rightarrow f^{-} }{lim}φ(d) =\) \(\underset{d\rightarrow f^{-} }{lim}\) \(\frac{fd}{d-f} = -∞\).
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn nhỏ hơn f thì ảnh của nó dần tới âm vô sực.
+) \(\underset{d\rightarrow +\infty }{lim} φ(d) =\) \(\underset{d\rightarrow +\infty }{lim}\) \(\frac{fd}{d-f}\) = \(\underset{d\rightarrow +\infty }{lim}\) \(\frac{f}{1-\frac{f}{d}} = f\).
Ý nghĩa: Nếu vật thật AB ở xa vô cực so với thấu kính thì ảnh của nó ở ngay trên tiêu diện ảnh (mặt phẳng qua tiêu điểm ảnh F' và vuông góc với trục chính).
Giaibaitap.me
Giải bài tập trang 140, 141 bài 3 hàm số liên tục Sách giáo khoa (SGK) Đại số và Giải tích 11. Câu 1: Dùng định nghĩa xét tính liên tục của hàm số...
Giải bài tập trang 141 bài 3 hàm số liên tục Sách giáo khoa (SGK) Đại số và Giải tích 11. Câu 4: Với mỗi hàm số, hãy xác định các khoảng trên đó hàm số liên tục...
Giải bài tập trang 156 bài 1 định nghĩa và ý nghĩa của đạo hàm Sách giáo khoa (SGK) Đại số và Giải tích 11. Câu 1: Tìm số gia của hàm số...
Giải bài tập trang 156 bài 1 định nghĩa và ý nghĩa của đạo hàm Sách giáo khoa (SGK) Đại số và Giải tích 11. Câu 5: Viết phương trình tiếp tuyến của đường cong...