Processing math: 31%
Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.7 trên 15 phiếu

Giải bài tập Toán 11

CHƯƠNG IV. GIỚI HẠN - TOÁN 11

Giải bài tập trang 140, 141 bài 3 hàm số liên tục Sách giáo khoa (SGK) Đại số và Giải tích 11. Câu 1: Dùng định nghĩa xét tính liên tục của hàm số...

Bài 1 trang 140 sgk đại số 11

Dùng định nghĩa xét tính liên tục của hàm số f(x)=x3+2x1 tại x0=3.

Giải:

Hàm số f(x)=x3+2x1 xác định trên Rx0=3R.

limx3f(x)= limx3(x3+2x1)=33+2.31=f(3) 
nên hàm số đã cho liên tục tại điểm x0=3.

 


Bài 2 trang 141 sgk đại số 11

a) Xét tính liên tục của hàm số y=g(x) tại x0=2, biết 

g(x)={x38x2;x25;x=2.

b) Trong biểu thức xác định g(x) ở trên, cần thay số 5 bởi số nào để hàm số liên tục tại x0=2.

Giải:

a) Ta có lim\underset{x\rightarrow 2}{lim} \frac{x^{3}-8}{x-2} = \underset{x\rightarrow 2}{lim}(x^2+2x + 4) = 2^2+2.2 +4 = 12.

Vì \underset{x\rightarrow 2}{\lim} g(x) ≠ g(2) nên hàm số y = g(x) gián đoạn tại x_0= 2.

b) Để hàm số y = f(x) liên tục tại x_0= 2 thì ta cần thay số 5 bởi số 12.

 


Bài 3 trang 141 sgk đại số 11

Cho hàm số f(x) = \left\{\begin{matrix} 3x + 2; & x<-1\\ x^{2}-1 & x \geq -1 \end{matrix}\right.

a) Vẽ đồ thị của hàm số y = f(x). Từ đó nêu nhận xét về tính liên tục của hàm số trên tập xác định của nó.

b) Khẳng định nhận xét trên bằng một chứng minh.

Giải:

a)

Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x_0= -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1)(- 1; +∞).

b)

+) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).

+) Nếu x> -1: f(x) = x^2- 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).

+) Tại x = -1;

Ta có 

\underset{x\rightarrow -1^{-}}{lim} f(x) = \underset{x\rightarrow -1^{-}}{lim} (3x + 2) = 3(-1) +2 = -1.

\underset{x\rightarrow -1^{+}}{lim} f(x) = \underset{x\rightarrow -1^{+}}{lim} (x^2- 1) = (-1)^2- 1 = 0.

Vì \underset{x\rightarrow -1^{-}}{lim} f(x) ≠ \underset{x\rightarrow -1^{+}}{lim} f(x) nên không tồn tại \underset{x\rightarrow -1}{lim} f(x). Vậy hàm số gián đoạn tại x_0= -1.

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác