Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3 trên 5 phiếu

Giải sách bài tập Toán 11

CHƯƠNG V. ĐẠO HÀM

Giải bài tập trang 207, 208 bài 3 đạo hàm của hàm số lượng giác Sách bài tập (SBT) Đại số và giải tích 11. Câu 3.17: Giải phương trình...

Bài 3.17 trang 207 Sách bài tập (SBT) Đại số và giải tích 11

Giải phương trình \(f'\left( x \right) = 0,\) biết rằng

a) \(f\left( x \right) = 3x + {{60} \over x} - {{64} \over {{x^3}}} + 5\) ;

b) \(f\left( x \right) = {{\sin 3x} \over 3} + \cos x - \sqrt 3 \left( {\sin x + {{\cos 3x} \over 3}} \right).\)    

Giải:

a) \(\left\{ { \pm 2; \pm 4} \right\}.\)    

b) \(\left\{ {{\pi  \over {12}} + k\pi ,{\pi  \over 8} + k{\pi  \over 2};k \in Z} \right\}.\)    


Bài 3.18 trang 207 Sách bài tập (SBT) Đại số và giải tích 11

Giải các phương trình

a) \(f'\left( x \right) = 0\) với \(f\left( x \right) = 1 - \sin \left( {\pi  + x} \right) + 2\cos {{3\pi  + x} \over 2}\) ;.

b) \(g'\left( x \right) = 0\) với \(g\left( x \right) = \sin 3x - \sqrt 3 \cos 3x + 3\left( {\cos x - \sqrt 3 \sin x} \right).\)

Giải:

a) \(x = {{2\pi } \over 3} + k{{4\pi } \over 3},k \in Z.\)

b) \(x = {\pi  \over 8} + k{\pi  \over 2};x = {\pi  \over {12}} + k\pi ,k \in Z.\)


Bài 3.19 trang 208 Sách bài tập (SBT) Đại số và giải tích 11

Giải phương trình \(f'\left( x \right) = g\left( x \right)\)

a)     Với \(f\left( x \right) = 1 - {\sin ^4}3x\) và \(g\left( x \right) = \sin 6x\) ;

b)     Với \(f\left( x \right) = 4x{\cos ^2}\left( {{x \over 2}} \right)\) và \(g\left( x \right) = 8\cos {x \over 2} - 3 - 2x\sin x.\)

Giải:

a) \(x = k{\pi  \over 6},k \in Z.\)    

b) \(x =  \pm {{2\pi } \over 3} + k4\pi ,k \in Z.\)    


Bài 3.20 trang 208 Sách bài tập (SBT) Đại số và giải tích 11

Chứng minh rằng \(f'\left( x \right) = 0\forall x \in R,\) nếu  :

a) \(f\left( x \right) = 3\left( {{{\sin }^4}x + {{\cos }^4}x} \right) - 2\left( {{{\sin }^6}x + {{\cos }^6}x} \right)\) ;

b) \(f\left( x \right) = {\cos ^6}x + 2{\sin ^4}x{\cos ^2}x + 3{\sin ^2}x{\cos ^4}x + {\sin ^4}x\) ;

c) \(f\left( x \right) = \cos \left( {x - {\pi  \over 3}} \right)\cos \left( {x + {\pi  \over 4}} \right) + \cos \left( {x + {\pi  \over 6}} \right)\cos \left( {x + {{3\pi } \over 4}} \right)\) ;

d) \(f\left( x \right) = {\cos ^2}x + {\cos ^2}\left( {{{2\pi } \over 3} + x} \right) + {\cos ^2}\left( {{{2\pi } \over 3} - x} \right).\)

Giải:

Cách 1.Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra \(f'\left( x \right) = 0.\)

a) \(f\left( x \right) = 1 \Rightarrow f'\left( x \right) = 0\) ;

b) \(f\left( x \right) = 1 \Rightarrow f'\left( x \right) = 0\) ;

c) \(f\left( x \right) = {1 \over 4}\left( {\sqrt 2  - \sqrt 6 } \right) \Rightarrow f'\left( x \right) = 0\) ;

d) \(f\left( x \right) = {3 \over 2} \Rightarrow f'\left( x \right) = 0.\)

Cách 2.Lấy đạo hàm của f(x) rồi chứng minh rằng \(f'\left( x \right) = 0.\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác