Bài 3.1 trang 35 Sách bài tập (SBT) Đại số và giải tích 11
Giải các phương trình sau
a) \(\cos 2x - \sin x - 1 = 0\)
b) \(\cos x\cos 2x = 1 + \sin x\sin 2x\)
c) \(4\sin x\cos x\cos 2x = - 1\)
d) \(\tan x = 3\cot x\)
Giải:
a)
\(\eqalign{
& \cos 2x - \sin x - 1 = 0 \cr
& \Leftrightarrow 1 - 2{\sin ^2}x - \sin x - 1 = 0 \cr
& \Leftrightarrow \sin x(2\sin x + 1) = 0 \cr
& \Leftrightarrow \left[ \matrix{
\sin x = 0 \hfill \cr
\sin x = - {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = k\pi ,k \in {\rm Z} \hfill \cr
x = - {\pi \over 6} + k2\pi ,k \in {\rm Z} \hfill \cr
x = {{7\pi } \over 6} + k2\pi ,k \in {\rm Z} \hfill \cr} \right. \cr} \)
b)
\(\eqalign{
& \cos x\cos 2x = 1 + \sin x\sin 2x \cr
& \Leftrightarrow \cos x\cos 2x - \sin x\sin 2x = 1 \cr
& \Leftrightarrow \cos 3x = 1 \Leftrightarrow 3x = k2\pi \cr
& \Leftrightarrow x = {{k2\pi } \over 3},k \in {\rm Z} \cr}\)
c)
\(\eqalign{
& 4\sin x\cos x\cos 2x = - 1 \cr
& \Leftrightarrow 2\sin 2x\cos 2x = - 1 \cr
& \Leftrightarrow \sin 4x = - 1 \cr
& \Leftrightarrow 4x = - {\pi \over 2} + k2\pi ,k \in {\rm Z} \cr
& \Leftrightarrow x = - {\pi \over 8} + k{\pi \over 2},k \in {\rm Z} \cr}\)
d)
\(\tan x = 3\cot x\). Điều kiện cosx ≠ 0 và sinx ≠ 0.
Ta có:
\(\eqalign{
& \tan x = {3 \over {\tan x}} \cr
& \Leftrightarrow {\tan ^2}x = 3 \cr
& \Leftrightarrow \tan x = \pm \sqrt 3 \cr
& \Leftrightarrow x = \pm {\pi \over 3} + k\pi ,k \in {\rm Z} \cr} \)
Các phương trình này thỏa mãn điều kiện của phương trình nên là nghiệm của phương trình đã cho.
Bài 3.2 trang 35 Sách bài tập (SBT) Đại số và giải tích 11
Giải các phương trình sau
a) \(\sin x + 2\sin 3x = - \sin 5x\)
b) \(\cos 5x\cos x = \cos 4x\)
c) \(\sin x\sin 2x\sin 3x = {1 \over 4}\sin 4x\)
d) \({\sin ^4}x + {\cos ^4}x = - {1 \over 2}{\cos ^2}2x\)
Giải:
a)
\(\eqalign{
& \sin x + 2\sin 3x = - \sin 5x \cr
& \Leftrightarrow \sin 5x + \sin x + 2\sin 3x = 0 \cr
& \Leftrightarrow 2\sin 3x\cos 2x + 2\sin 3x = 0 \cr
& \Leftrightarrow 2\sin 3x\left( {\cos 2x + 1} \right) = 0 \cr
& \Leftrightarrow 4\sin 3x{\cos ^2}x = 0 \cr
& \Leftrightarrow \left[ \matrix{
\sin 3x = 0 \hfill \cr
\cos x = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
3x = k\pi ,k \in {\rm Z} \hfill \cr
x = {\pi \over 2} + k\pi ,k \in {\rm Z} \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = k{\pi \over 3},k \in {\rm Z} \hfill \cr
x = {\pi \over 2} + k\pi ,k \in {\rm Z} \hfill \cr} \right. \cr} \)
b)
\(\eqalign{
& \cos 5x\cos x = \cos 4x \cr
& \Leftrightarrow {1 \over 2}\left( {\cos 6x + \cos 4x} \right) = \cos 4x \cr
& \Leftrightarrow \cos 6x = \cos 4x \cr
& \Leftrightarrow 6x = \pm 4x + k2\pi ,k \in {\rm Z} \cr
& \Leftrightarrow \left[ \matrix{
2x = k2\pi ,k \in {\rm Z} \hfill \cr
10x = k2\pi ,k \in {\rm Z} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = k\pi ,k \in {\rm Z} \hfill \cr
x = k{\pi \over 5},k \in {\rm Z} \hfill \cr} \right. \cr}\)
Tập {kπ, k ∈ Z} chứa trong tập \(\left\{ {l{\pi \over 5},l \in {\rm Z}} \right\}\) ứng với các giá trị l là bội số của 5, nên nghiệm của phương trình là: \(x = k{\pi \over 5},k \in {\rm Z}\)
c)
\(\eqalign{
& \sin x\sin 2x\sin 3x = {1 \over 4}\sin 4x \cr
& \Leftrightarrow \sin x\sin 2x\sin 3x = {1 \over 2}\sin 2x\cos 2x \cr
& \Leftrightarrow \sin 2x\left( {\cos 2x - 2\sin x\sin 3x} \right) = 0 \cr
& \Leftrightarrow \sin 2x\cos 4x = 0 \cr
& \Leftrightarrow \left[ \matrix{
\sin 2x = 0 \hfill \cr
\cos 4x = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
2x = k\pi ,k \in {\rm Z} \hfill \cr
4x = {\pi \over 2} + k\pi ,k \in {\rm Z} \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = k{\pi \over 2},k \in {\rm Z} \hfill \cr
x = {\pi \over 8} + k{\pi \over 4},k \in {\rm Z} \hfill \cr} \right. \cr} \)
d)
\(\eqalign{
& {\sin ^4}x + {\cos ^4}x = - {1 \over 2}{\cos ^2}2x \cr
& \Leftrightarrow {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x = - {1 \over 2}{\cos ^2}2x \cr
& \Leftrightarrow 1 - {1 \over 2}{\sin ^2}2x + {1 \over 2}{\cos ^2}2x = 0 \cr
& \Leftrightarrow 1 + {1 \over 2}\cos 4x = 0 \cr
& \Leftrightarrow \cos 4x = - 2 \cr} \)
Phương trình vô nghiệm (Vế phải không dương với mọi x trong khi vế trái dương với mọi x nên phương trình đã cho vô nghiệm)
Bài 3.3 trang 36 Sách bài tập (SBT) Đại số và giải tích 11
Giải các phương trình sau
a) \(3{\cos ^2}x - 2\sin x + 2 = 0\)
b) \(5{\sin ^2}x + 3\cos x + 3 = 0\)
c) \({\sin ^6}x + {\cos ^6}x = 4{\cos ^2}2x\)
d) \( - {1 \over 4} + {\sin ^2}x = {\cos ^4}x\)
Giải:
a)
\(\eqalign{
& 3{\cos ^2}x - 2\sin x + 2 = 0 \cr
& \Leftrightarrow 3\left( {1 - {{\sin }^2}x} \right) - 2\sin x + 2 = 0 \cr
& \Leftrightarrow 3{\sin ^2}x + 2\sin x - 5 = 0 \cr
& \Leftrightarrow \left( {\sin x - 1} \right)\left( {3\sin x + 5} \right) = 0 \cr
& \Leftrightarrow \sin x = 1 \cr
& \Leftrightarrow x = {\pi \over 2} + k2\pi ,k \in {\rm Z} \cr} \)
b)
\(\eqalign{
& 5{\sin ^2}x + 3\cos x + 3 = 0 \cr
& \Leftrightarrow 5\left( {1 - {{\cos }^2}x} \right) + 3\cos x + 3 = 0 \cr
& \Leftrightarrow 5{\cos ^2}x - 3\cos x - 8 = 0 \cr
& \Leftrightarrow \left( {\cos x + 1} \right)\left( {5\cos x - 8} \right) = 0 \cr
& \Leftrightarrow \cos x = - 1 \cr
& \Leftrightarrow x = \left( {2k + 1} \right)\pi ,k \in {\rm Z} \cr} \)
c)
\(\eqalign{
& {\sin ^6}x + {\cos ^6}x = 4{\cos ^2}2x \cr
& \Leftrightarrow {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = 4{\cos ^2}2x \cr
& \Leftrightarrow 1 - {3 \over 4}{\sin ^2}2x = 4{\cos ^2}2x \cr
& \Leftrightarrow 1 - {3 \over 4}\left( {1 - {{\cos }^2}2x} \right) = 4{\cos ^2}2x \cr
& \Leftrightarrow {{13} \over 4}{\cos ^2}2x = {1 \over 4} \cr
& \Leftrightarrow 13\left( {{{1 + \cos 4x} \over 2}} \right) = 1 \cr
& \Leftrightarrow 1 + \cos 4x = {2 \over {13}} \cr
& \Leftrightarrow \cos 4x = - {{11} \over {13}} \cr
& \Leftrightarrow 4x = \pm \arccos \left( { - {{11} \over {13}}} \right) + k2\pi ,k \in {\rm Z} \cr
& \Leftrightarrow x = \pm {1 \over 4}\arccos \left( { - {{11} \over {13}}} \right) + k{\pi \over 2},k \in {\rm Z} \cr} \)
d)
\(\eqalign{
& - {1 \over 4} + {\sin ^2}x = {\cos ^4}x \cr
& \Leftrightarrow - {1 \over 4} + {{1 - \cos 2x} \over 2} = {\left( {{{1 + \cos 2x} \over 2}} \right)^2} \cr
& \Leftrightarrow - 1 + 2 - 2\cos 2x = 1 + 2\cos 2x + {\cos ^2}2x \cr
& \Leftrightarrow {\cos ^2}2x + 4\cos 2x = 0 \cr
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0 \hfill \cr
\cos 2x = - 4\left( {Vô\,\,nghiệm} \right){\rm{ }} \hfill \cr} \right. \cr
& \Leftrightarrow 2x = {\pi \over 2} + k\pi ,k \in {\rm Z} \cr
& \Leftrightarrow x = {\pi \over 4} + k{\pi \over 2},k \in {\rm Z} \cr} \)
Bài 3.4 trang 36 Sách bài tập (SBT) Đại số và giải tích 11
Giải các phương trình sau
a) \(2\tan x - 3\cot x - 2 = 0\)
b) \({\cos ^2}x = 3\sin 2x + 3\)
c) \(\cot x - \cot 2x = \tan x + 1\)
Giải
a) \(2\tan x - 3\cot x - 2 = 0\) Điều kiện cosx ≠ 0 và sinx ≠ 0
Ta có
\(\eqalign{
& {\rm{2}}\tan x - {3 \over {\tan x}} - 2 = 0 \cr
& \Leftrightarrow 2{\tan ^2}x - 2\tan x - 3 = 0 \cr
& \Leftrightarrow \tan x = {{1 \pm \sqrt 7 } \over 2} \cr
& \Rightarrow \left[ \matrix{
x = \arctan \left( {{{1 + \sqrt 7 } \over 2}} \right) + k\pi ,k \in {\rm Z} \hfill \cr
x = \arctan \left( {{{1 - \sqrt 7 } \over 2}} \right) + k\pi ,k \in {\rm Z} \hfill \cr} \right. \cr}\)
Các giá trị này thỏa mãn điều kiện nên là nghiệm của phương trình
b) \({\cos ^2}x = 3\sin 2x + 3\)
Ta thấy cosx = 0 không thỏa mãn phương trình. Với cosx ≠ 0, chia hai vế của phương trình cho cos2x ta được:
\(\eqalign{
& 1 = 6\tan x + 3\left( {1 + {{\tan }^2}x} \right) \cr
& \Leftrightarrow 3{\tan ^2}x + 6\tan x + 2 = 0 \cr
& \Leftrightarrow \tan x = {{ - 3 \pm \sqrt 3 } \over 3} \cr
& \Leftrightarrow \left[ \matrix{
x = \arctan \left( {{{ - 3 + \sqrt 3 } \over 3}} \right) + k\pi ,k \in {\rm Z} \hfill \cr
x = \arctan \left( {{{ - 3 - \sqrt 3 } \over 3}} \right) + k\pi ,k \in {\rm Z} \hfill \cr} \right. \cr} \)
c) \(\cot x - \cot 2x = \tan x + 1\) (1)
Điều kiện: sinx ≠ 0 và cosx ≠ 0. Khi đó:
\(\eqalign{
& \left( 1 \right) \Leftrightarrow {{\cos x} \over {\sin x}} - {{\cos 2x} \over {\sin 2x}} = {{\sin x} \over {\cos x}} + 1 \cr
& \Leftrightarrow 2{\cos ^2}x - \cos 2x = 2{\sin ^2}x + \sin 2x \cr
& \Leftrightarrow 2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) - \cos 2x = \sin 2x \cr
& \Leftrightarrow \cos 2x = \sin 2x \cr
& \Leftrightarrow \tan 2x = 1 \cr
& \Rightarrow 2x = {\pi \over 4} + k\pi ,k \in Z \cr
& \Rightarrow x = {\pi \over 8} + k{\pi \over 2},k \in Z \cr} \)
Các giá trị này thỏa mãn điều kiện nên là nghiệm của phương trình
Giaibaitap.me
Giải bài tập trang 36 bài 3 một số phương trình lượng giác cơ bản Sách bài tập (SBT) Đại số và giải tích 11. Câu 3.5:
Giải bài tập trang 66 bài 2 hoán vị - chỉnh hợp - tổ hợp Sách bài tập (SBT) Đại số và giải tích 11. Câu 2.1: Một cái khay tròn đựng bánh kẹo ngày Tết có 6 ngăn hình quạt màu khác nhau. Hỏi có bao nhiêu cách bày 6 loại bánh kẹo vào 6 ngăn đó ?...
Giải bài tập trang 66, 67 bài 2 hoán vị - chỉnh hợp - tổ hợp Sách bài tập (SBT) Đại số và giải tích 11. Câu 2.5: Bốn người đàn ông, hai người đàn bà và một đứa trẻ được xếp ngồi vào bảy chiếc ghế đặt quanh một bàn tròn. Hỏi có bao nhiêu cách xếp sao cho...
Giải bài tập trang 67 bài 2 hoán vị - chỉnh hợp - tổ hợp Sách bài tập (SBT) Đại số và giải tích 11. Câu 2.9: Cô giáo chia 4 quả táo, 3 quả cam và 2 quả chuối cho 9 cháu (mỗi cháu một quả). Hỏi có bao nhiêu cách chia khác nhau ?...