Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.7 trên 3 phiếu

Giải sách bài tập Toán 11

CHƯƠNG II. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

Giải bài tập trang 74 bài 3 đường thẳng và mặt phẳng song song Sách bài tập (SBT) Hình học 11. Câu 2.16: Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD...

Bài 2.16 trang 74 Sách bài tập (SBT) Hình học 11

Cho tứ diện ABCD. Gọi G1 và G2  lần lượt là trọng tâm của tam giác ACD và BCD. Chứng minh rằng G1G2 song song với các mặt phẳng (ABC) và (ABD).

Giải:

(h.2.34)

Gọi I là trung điểm của CD.

Vì G1 là trọng tâm của tam giác ACD nên \({G_1} \in AI\)

Vì G2 là trọng tâm của tam giác BCD nên \({G_2} \in BI\)

Ta có :

\(\left\{ \matrix{
{{I{G_1}} \over {IA}} = {1 \over 3} \hfill \cr
{{I{G_2}} \over {IB}} = {1 \over 3} \hfill \cr} \right. \Rightarrow {{I{G_1}} \over {IA}} = {{I{G_2}} \over {IB}} \Rightarrow {G_1}{G_2}\parallel AB\)

\(AB \subset \left( {ABC} \right) \Rightarrow {G_1}{G_2}\parallel \left( {ABC} \right)\) 

Và \(AB \subset \left( {ABD} \right) \Rightarrow {G_1}{G_2}\parallel \left( {ABD} \right)\)

 

Bài 2.17 trang 74 Sách bài tập (SBT) Hình học 11

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt .Gọi O là giao điểm của AC và BD, O’ là giao điểm của AE và BF.

a) Chứng minh rằng OO’ song song với hai mặt phẳng (ADF) và (BCE)

b) Gọi M và N lần lượt là trọng tâm của các tam giác ABDvà ABE. Chứng minh rằng .

Giải:

(h.2.35)

a) Ta có : \(OO'\parallel DF\) ( đường trung bình của tam giác BDF).

Vì \(DF \subset \left( {ADF} \right) \Rightarrow OO'\parallel \left( {ADF} \right)\).

Tương tự \(OO'\parallel EC\) (đường trung bình của tam giác AEC).

Vì \(EC \subset \left( {BCE} \right)\) nên \(OO'\parallel \left( {BCE} \right)\).

b) Gọi I là trung điểm AB;

Vì M là trọng tâm của tam giác ABD nên \(M \in DI\)

Vì N là trọng tâm của tam giác ABE nên \(N \in EI\)

Ta có : 

\(\left\{ \matrix{
{{IM} \over {I{\rm{D}}}} = {1 \over 3} \hfill \cr
{{IN} \over {IE}} = {1 \over 3} \hfill \cr} \right. \Rightarrow {{IM} \over {I{\rm{D}}}} = {{IN} \over {IE}} \Rightarrow MN\parallel DE\)

\(\left\{ \matrix{
C{\rm{D}}\parallel AB \hfill \cr
C{\rm{D}} = AB \hfill \cr
EF\parallel AB \hfill \cr
EF = AB \hfill \cr} \right.\)

Nên \(C{\rm{D}}\parallel EF\) và \(C{\rm{D  =  }}EF\), suy ra tứ giác CDFE là hình bình hành.

\(\left\{ \matrix{
MN\parallel DE \hfill \cr
DE \subset \left( {CEF} \right) \hfill \cr} \right. \Rightarrow MN\parallel \left( {CEF} \right)\)

 


Bài 2.18 trang 74 Sách bài tập (SBT) Hình học 11

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trong đoạn AD sao cho AD = 3AM

a)  Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).

b) Đường thẳng qua M song song với AB cắt CI tại N. Chứng minh rằng \(NG\parallel \left( {SC{\rm{D}}} \right)\).

c) Chứng minh rằng \(MG\parallel \left( {SC{\rm{D}}} \right)\).

Giải:

(h.2.36)

 

a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).

Ta có:

\(\left\{ \matrix{
A{\rm{D}} \subset \left( {SA{\rm{D}}} \right) \hfill \cr
BC \subset \left( {SBC} \right) \hfill \cr
A{\rm{D}}\parallel BC \hfill \cr} \right.\)

\( \Rightarrow \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right) = Sx\) 

Và \(Sx\parallel AD\parallel BC\).

b) Ta có: \(MN\parallel IA\parallel C{\rm{D}}\)

\( \Rightarrow {{AM} \over {A{\rm{D}}}} = {{IN} \over {IC}} = {1 \over 3}\)

Mà \({{IG} \over {IS}} = {1 \over 3}\) ( G là trọng tâm của ∆SAB) nên \({{IG} \over {IS}} = {{IN} \over {IC}} = {1 \over 3} \Rightarrow GN\parallel SC\)

\(SC \subset \left( {SC{\rm{D}}} \right) \Rightarrow GN\parallel \left( {SC{\rm{D}}} \right)\)

c) Giả sử IM cắt CD tại \(K \Rightarrow SK \subset \left( {SC{\rm{D}}} \right)\)

\(MN\parallel C{\rm{D}} \Rightarrow {{MN} \over {CK}} = {{IN} \over {IC}} = {1 \over 3} \Rightarrow {{IM} \over {IK}} = {1 \over 3}\) 

Ta có:

\(\left\{ \matrix{
{{IG} \over {IS}} = {1 \over 3} \hfill \cr
{{IM} \over {IK}} = {1 \over 3} \hfill \cr} \right. \Rightarrow GM\parallel SK \Rightarrow GM\parallel \left( {SC{\rm{D}}} \right)\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác