Bài 1.1 trang 99 Sách bài tập (SBT) Đại số và giải tích 11
Chứng minh các đẳng thức sau (với n ∈ N* )
a) \(2 + 5 + 8 + ... + \left( {3n - 1} \right) = {{n\left( {3n + 1} \right)} \over 2};\)
b) \(3 + 9 + 27 + ... + {3^n} = {1 \over 2}\left( {{3^{n + 1}} - 3} \right).\)
Giải:
a) Đặt vế trái bằng Sn. Kiểm tra với n = 1 hệ thức đúng.
Giả sử đã có \({S_k} = {{k\left( {3k + 1} \right)} \over 2}\) với \(k \ge 1\).
Ta phải chứng minh \({S_{k + 1}} = {{\left( {k + 1} \right)\left( {3k + 4} \right)} \over 2}\)
Thật vậy
\(\eqalign{
& {S_{k + 1}} = {S_k} + 3\left( {k + 1} \right) - 1 \cr
& = {{k\left( {3k + 1} \right)} \over 2} + 3k + 2 \cr
& = {{3{k^2} + k + 6k + 4} \over 2} \cr
& = {{3{k^2} + 7k + 4} \over 2} \cr
& {\rm{ = }}{{\left( {k + 1} \right)\left( {3k + 4} \right)} \over 2}{\rm{ }}\left( {đpcm} \right) \cr} \)
b) Đặt vế trái bằng làm tương tự như câu a).
Bài 1.2 trang 99 Sách bài tập (SBT) Đại số và giải tích 11
Chứng minh các đẳng thức sau (với n ∈ N* )
a) \({1^2} + {3^2} + {5^2} + ... + {\left( {2n - 1} \right)^2} = {{n\left( {4{n^2} - 1} \right)} \over 3};\)
b) \({1^3} + {2^3} + {3^3} + ... + {n^3} = {{{n^2}{{\left( {n + 1} \right)}^2}} \over 4}\)
Giải:
a) Đặt vế trái bằng Sn
Với n = 1 vế trái chỉ có một số hạng bằng 1, vế phải bằng \({{1\left( {4.1 - 1} \right)} \over 3} = 1\)
Giả sử đã có \({S_k} = {{k\left( {4{k^2} - 1} \right)} \over 3}\) với \(k \ge 1\). Ta phải chứng minh
\({S_{k + 1}} = {{\left( {k + 1} \right)\left[ {4{{\left( {k + 1} \right)}^2} - 1} \right]} \over 3}\)
Thật vậy, ta có
\(\eqalign{
& {S_{k + 1}} = {S_k} + {\left[ {2\left( {k + 1} \right) - 1} \right]^2} = {S_k} + {\left( {2k + 1} \right)^2} \cr
& {\rm{ = }}{{k\left( {4{k^2} - 1} \right)} \over 3} + {\left( {2k + 1} \right)^2} \cr
& = {{\left( {2k + 1} \right)\left[ {k\left( {2k - 1} \right) + 3\left( {2k + 1} \right)} \right]} \over 3} \cr
& {\rm{ = }}{{\left( {k + 1} \right)\left( {2{k^2} + 5k + 3} \right)} \over 3} \cr
& = {{\left( {k + 1} \right)\left( {2k + 3} \right)\left( {2k + 1} \right)} \over 3} \cr
& = {{\left( {k + 1} \right)\left[ {4{{\left( {k + 1} \right)}^2} - 1} \right]} \over 3} \cr} \)
b) Đặt vế trái bằng An
Dễ thấy với n = 1 hệ thức đúng.
Giả sử đã có \({A_k} = {{{k^2}{{\left( {k + 1} \right)}^2}} \over 4},\left( {k \ge 1} \right)\)
Ta có:
\(\eqalign{
& {A_{k + 1}} = {A_k} + {\left( {k + 1} \right)^3} \cr
& = {{{k^2}{{\left( {k + 1} \right)}^2}} \over 4} + {\left( {k + 1} \right)^3} \cr
& {\rm{ = }}{{{{\left( {k + 1} \right)}^2}\left( {{k^2} + 4k + 4} \right)} \over 4} \cr
& = {{{{\left( {k + 1} \right)}^2}{{\left( {k + 2} \right)}^2}} \over 4} \cr} \)
Bài 1.3 trang 100 Sách bài tập (SBT) Đại số và giải tích 11
Chứng minh rằng với mọi n ∈ N* ta có
a) \(2{n^3} - 3{n^2} + n\) chia hết cho 6.
b) \({11^{n + 1}} + {12^{2n - 1}}\) chia hết cho 133.
Giải:
a) HD: Đặt \({B_n} = 2{n^3} - 3{n^2} + n\) tính B1
Giả sử đã có \({B_k} = 2{k^3} - 3{k^2} + k\) chia hết cho 6.
Ta phải chứng minh \({B_{k + 1}} = 2{\left( {k + 1} \right)^3} - 3{\left( {k + 1} \right)^2} + k\) chia hết cho 6.
b) Đặt \({A_n} = {11^{n + 1}} + {12^{2n - 1}}\) Dễ thấy \({A_1} = 133\) chia hết cho 133.
Giả sử \({A_k} = {11^{k + 1}} + {12^{2k - 1}}\) đã có chia hết cho 133.
Ta có
\(\eqalign{
& {A_{k + 1}} = {11^{k + 2}} + {12^{2k + 1}} \cr
& = {11.11^{k + 1}} + {12^{2k - 1}}{.12^2} \cr
& {\rm{ = 11}}{\rm{.1}}{{\rm{1}}^{k + 1}} + {12^{2k - 1}}\left( {11 + 133} \right) \cr
& = 11.{A_k} + {133.12^{2k - 1}} \cr} \)
Vì \({A_k} \vdots 133\) nên \({A_{k + 1}} \vdots 133\)
Bài 1.4 trang 100 Sách bài tập (SBT) Đại số và giải tích 11
Chứng minh các bất đẳng thức sau (n ∈ N*)
a) \({2^{n + 2}} > 2n + 5{\rm{ }}\);
b) \({\sin ^{2n}}\alpha + {\cos ^{2n}}\alpha \le 1\)
Giải:
a) Với n = 1 thì \({2^{1 + 2}} = 8 > 7 = 2.1 + 5\)
Giả sử bất đẳng thức đúng với \(n = k \ge 1\) tức là \({2^{k + 2}} > 2k + 5\,\,\,(1)\)
Ta phải chứng minh nó cũng đúng với n = k + 1, tức là \({2^{k + 3}} > 2\left( {k + 1} \right) + 5\) hay \({2^{k + 3}} > 2k + 7\,\,\,\left( 2 \right)\)
Thật vậy, nhân hai vế của (1) với 2, ta được
\({2^{k + 3}} > 4k + 10 = 2k + 7 + 2k + 3\)
Vì \(2k + 3 > 0\) nên \({2^{k + 3}} > 2k + 7\left( {đpcm} \right)\)
b) Với n = 1 thì \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) bất đẳng thức đúng.
Giả sử đã có \({\sin ^{2k}}\alpha + {\cos ^{2k}}\alpha \le 1\) với \(k \ge 1\), ta phải chứng minh
\({\sin ^{2k + 2}}\alpha + {\cos ^{2k + 2}}\alpha \le 1\).
Thật vậy, ta có:
\({\sin ^{2k + 2}}\alpha + {\cos ^{2k + 2}}\alpha\)
\( = {\sin ^{2k}}\alpha .{\sin ^2}\alpha + {\cos ^{2k}}\alpha .{\cos ^2}\alpha \le {\sin ^{2k}}\alpha + {\cos ^{2k}}\alpha \le 1\)
Giaibaitap.me
Giải bài tập trang 100 bài 1 phương pháp quy nạp toán học Sách bài tập (SBT) Đại số và giải tích 11. Câu 1.5: Với giá trị nào của số tự nhiên n ta có...
Giải bài tập trang 111, 112 bài 2 dãy số Sách bài tập (SBT) Đại số và giải tích 11. Câu 2.1: Viết 5 số hạng đầu và khảo sát tính tăng, giảm của các dãy số (un) biết...
Giải bài tập trang 112 bài 2 dãy số Sách bài tập (SBT) Đại số và giải tích 11. Câu 2.5: Cho dãy số (un) với...
Giải bài tập trang 117 bài 3 cấp số cộng Sách bài tập (SBT) Đại số và giải tích 11. Câu 3.1: Cho dãy số...