Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.1 trên 8 phiếu

Giải bài tập Toán 11

CHƯƠNG V. ĐẠO HÀM

Giải bài tập trang 174 bài 5 đạo hàm cấp hai Sách giáo khoa (SGK) Đại số và Giải tích 11. Câu 1:Tìm đạo hàm cấp hai của các hàm số sau...

Bài 1 trang 174 sách giáo khoa Đại số và Giải tích 11

a) Cho \(f(x) = (x + 10)^6\). Tính \(f"(2)\).

          b) Cho \(f(x) = \sin 3x\). Tính \(f" \left ( -\frac{\pi }{2} \right )\) , \(f"(0)\), \(f" \left ( \frac{\pi }{18} \right )\).

Lời giải:

a) Ta có \(f'(x) = 6(x + 10)'.(x + 10)^5\),

\(f"(x) = 6.5(x + 10)'.(x + 10)^4= 30.(x + 10)^4\)

Suy ra \(f''(2) = 30.(2 + 10)^4 = 622 080\).

b) Ta có  \(f'(x) = (3x)'.\cos 3x = 3\cos 3x\),

             \(f"(x) = 3.[-(3x)'.\sin 3x] = -9\sin 3x\).

Suy ra \(f"\left ( -\frac{\pi }{2} \right ) =  -9\sin \left ( -\frac{3\pi }{2} \right ) = -9\);

          \(f"(0) = -9sin0 = 0\);

          \(f" \left ( \frac{\pi }{18} \right ) = -9\sin\left ( \frac{\pi }{6} \right ) =  -\frac{9}{2}\).

 


Bài 2 trang 174 sách giáo khoa Đại số và Giải tích 11

Tìm đạo hàm cấp hai của các hàm số sau:

a) \(y =  \frac{1}{1-x}\);

b) \(y =  \frac{1}{\sqrt{1-x}}\);

c) \(y = \tan x\);

d) \(y = \cos^2x\) .

Lời giải:

a) \(y' = -\frac{(1-x)'}{(1-x)^{2}}\) = \( \frac{1}{(1-x)^{2}}\), \(y" =  -\frac{[(1-x)^{2}]'}{(1-x)^{4}} = - \frac{2.(-1)(1-x)}{(1-x)^{4}}\)  = \( \frac{2}{(1-x)^{3}}\).

b) \(y' =  -\frac{(\sqrt{1-x})'}{1-x}\) = \( \frac{1}{2(1-x)\sqrt{1-x}}\);

    \(y" =  -\frac{1}{2}\frac{[(1-x)\sqrt{1-x}]'}{(1-x)^{3}}\) = \( -\frac{1}{2}\frac{-\sqrt{1-x}+(1-x)\frac{-1}{2\sqrt{1-x}}}{(1-x)^{3}}\) = \( \frac{3}{4(1-x)^{2}\sqrt{1-x}}\).

c) \(y' =  \frac{1}{cos^{2}x}\); \(y" =  -\frac{(cos^{2}x)'}{cos^{4}x}  = \frac{2cosx.sinx}{cos^{4}x}\) = \( \frac{2sinx}{cos^{3}x}\).

d) \(y' = 2cosx.(cosx)' = 2cosx.(-sinx) \)

         \(= - 2sinx.cosx = -sin2x\),

   \(y" = -(2x)'.cos2x = -2cos2x\).

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác