Trang chủ
Loigiaihay.com 2024

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 11

CHƯƠNG III. VECTƠ TRONG KHÔNG GIAN QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN

Giải bài tập trang 131 bài 1 vecto trong không gian Sách bài tập (SBT) Hình học 11. Câu 3.1: Cho hình lập phương ABCDA’B’C’D’ cạnh a. Gọi O và O’ theo thứ tự là tâm của hai hình vuông ABCD và A’B’C’D’....

Bài 3.1 trang 131 Sách bài tập (SBT) Hình học 11

Cho hình lập phương ABCDA’B’C’D’ cạnh a. Gọi O và O’ theo thứ tự là tâm của hai hình vuông ABCD và A’B’C’D’.

a) Hãy biểu diễn các vectơ \(\overrightarrow {AO} ,\overrightarrow {AO'} \) theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho.

b) Chứng minh rằng \(\overrightarrow {A{\rm{D}}}  + \overrightarrow {D'C'}  + \overrightarrow {D'A'}  = \overrightarrow {AB} \).

Giải:

a) *\(\overrightarrow {AO}  = {1 \over 2}\overrightarrow {AC}  = {1 \over 2}\overrightarrow {A'C'}  = {1 \over 2}\left( {\overrightarrow {AB}  + \overrightarrow {A{\rm{D}}} } \right)\)

\(\overrightarrow {AO}  = \overrightarrow {AB}  + \overrightarrow {BO}  = \overrightarrow {AB}  + {1 \over 2}\overrightarrow {B{\rm{D}}} ,v.v....\)

*\(\overrightarrow {AO}  = {1 \over 2}\overrightarrow {AC}  + \overrightarrow {AA'} \)

\(\eqalign{
& = {1 \over 2}\left( {\overrightarrow {AA'} + \overrightarrow {AC'} } \right) = {1 \over 2}\left( {\overrightarrow {AB'} + \overrightarrow {AD'} } \right) \cr
& = \overrightarrow {AA'} + \overrightarrow {A'B'} + {1 \over 2}\overrightarrow {B'D'} \cr
& = \overrightarrow {AB} + \overrightarrow {BB'} + {1 \over 2}\overrightarrow {B'D'} ,v.v... \cr} \)

b) \(\overrightarrow {AD}  + \overrightarrow {D'C'}  + \overrightarrow {D'A'}  = \overrightarrow {AD}  + \overrightarrow {DC}  + \overrightarrow {CB} \)

(vì \(\overrightarrow {D'C'}  = \overrightarrow {DC} \) và \(\overrightarrow {D'A'}  = \overrightarrow {CB} \)) nên \(\overrightarrow {A{\rm{D}}}  + \overrightarrow {D'C'}  + \overrightarrow {D'A'}  = \overrightarrow {AB} \).

 


Bài 3.2 trang 131 Sách bài tập (SBT) Hình học 11

Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là:

\(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OB}  + \overrightarrow {O{\rm{D}}} \)

Giải:

Giả sử bốn điểm A, B, C, D tạo thành một hình bình hành ta có:

\(\overrightarrow {BC}  = \overrightarrow {A{\rm{D}}}  \Leftrightarrow \overrightarrow {OC}  - \overrightarrow {OB}  = \overrightarrow {O{\rm{D}}}  - \overrightarrow {OA} \) (với điểm O bất kì )

\( \Leftrightarrow \overrightarrow {OC}  + \overrightarrow {OA}  = \overrightarrow {O{\rm{D}}}  + \overrightarrow {OB} \)

Ngược lại, giả sử ta có hệ thức:

\(\overrightarrow {OC}  + \overrightarrow {OA}  = \overrightarrow {O{\rm{D}}}  + \overrightarrow {OB} \)

\( \Leftrightarrow \overrightarrow {OC}  - \overrightarrow {OB}  = \overrightarrow {O{\rm{D}}}  - \overrightarrow {OA} \) 

\( \Leftrightarrow \overrightarrow {BC}  = \overrightarrow {A{\rm{D}}} \) 

Vì A, B, C, D không thẳng hàng nên tứ giác ABCD là hình bình hành.

 


Bài 3.3 trang 131 Sách bài tập (SBT) Hình học 11

Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD lần lượt ta lấy các điểm M, N sao cho

\({{AM} \over {AC}} = {{BN} \over {B{\rm{D}}}} = k\left( {k > 0} \right)\)

Chứng minh rằng ba vectơ \(\overrightarrow {PQ} ,\overrightarrow {PM} ,\overrightarrow {PN} \) đồng phẳng.

Giải:

Ta có:

\(\eqalign{
& \overrightarrow {PQ} = {1 \over 2}\left( {\overrightarrow {PC} + \overrightarrow {P{\rm{D}}} } \right) \cr
& = {1 \over 2}\left[ {\left( {\overrightarrow {AC} - \overrightarrow {AP} } \right) + \left( {\overrightarrow {B{\rm{D}}} - \overrightarrow {BP} } \right)} \right] \cr
& = {1 \over 2}\left[ {\left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) - \underbrace {\left( {\overrightarrow {AP} + \overrightarrow {BP} } \right)}_{\overrightarrow 0 }} \right] \cr
& = {1 \over 2}.{1 \over k}\left( {\overrightarrow {AM} + \overrightarrow {BN} } \right) \cr} \) 

Vì \(\overrightarrow {AC}  = {1 \over k}.\overrightarrow {AM} \) và \(\overrightarrow {B{\rm{D}}}  = {1 \over k}.\overrightarrow {BN} \)

Đồng thời \(\overrightarrow {AM}  = \overrightarrow {AP}  + \overrightarrow {PM} \) và \(\overrightarrow {BN}  = \overrightarrow {BP}  + \overrightarrow {PN} \), nên \(\overrightarrow {PQ}  = {1 \over {2k}}\left( {\overrightarrow {PM}  + \overrightarrow {PN} } \right)\) vì \(\overrightarrow {AP}  + \overrightarrow {BP}  = \overrightarrow 0 \)

Vậy \(\overrightarrow {PQ}  = {1 \over {2k}}\overrightarrow {PM}  + {1 \over {2k}}\overrightarrow {PN} \)

Do đó ba vectơ \(\overrightarrow {PQ} ,\overrightarrow {PM} ,\overrightarrow {PN} \) đồng phẳng.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác