Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 11

CHƯƠNG IV. GIỚI HẠN - SBT TOÁN 11

Giải bài tập trang 172 bài ôn tập chương IV giới hạn Sách bài tập (SBT) Đại số và giải tích 11. Câu 14: Cho hàm số...

Bài 13 trang 172 Sách bài tập (SBT) Đại số và giải tích 11

a) \({x^5} - 5x - 1 = 0\) có ít nhất ba nghiệm ;

b) \(m{\left( {x - 1} \right)^3}\left( {{x^2} - 4} \right) + {x^4} - 3 = 0\) luôn có ít nhất hai nghiệm với mọi giá trị của tham số m ;

c) \({x^3} - 3x = m\) có ít nhất hai nghiệm với mọi giá trị của $m \in \left( { - 2;2} \right)\)

Giải :

Hướng dẫn :

a)      Xét hàm số \(f\left( x \right) = {x^5} - 5x - 1\) trên các đoạn \(\left[ { - 2; - 1} \right],\left[ { - 1;0} \right],\left[ {0;3} \right]\)

b)      Xét hàm số \(f\left( x \right) = m{\left( {x - 1} \right)^3}\left( {{x^2} - 4} \right) + {x^4} - 3\) trên các đoạn \(\left[ { - 2;1} \right],\left[ {1;2} \right]\)

c)      Xét hàm số \(f\left( x \right) = {x^3} - 3x - m\) trên các đoạn \(\left[ { - 1;1} \right],\left[ {1;2} \right]\)


Bài 14 trang 172 Sách bài tập (SBT) Đại số và giải tích 11

Cho hàm số \(f\left( x \right) = {{{x^3} + 8x + 1} \over {x - 2}}\). Phương trình \(f\left( x \right) = 0\) có nghiệm hay không

a)      trong khoảng (1; 3) ?

b)      trong khoảng (-3; 1) ?

Giải:

a)      Với \(x \ne 2\) ta có \({{{x^3} + 8x + 1} \over {x - 2}} = 0 \Leftrightarrow {x^3} + 8x + 1 = 0\)

Vì \({x^3} + 8x + 1 > 0\) với mọi \(x \in \left( {1;3} \right)\) nên phương trình \({x^3} + 8x + 1 = 0\) không có nghiệm trong khoảng này.

b)     \(f\left( x \right)\) là hàm phân thức hữu tỉ, nên liên tục trên \(\left( { - \infty ;2} \right)\). Do đó, nó liên tục trên [-3; 1]

Mặt khác, \(f\left( { - 3} \right)f\left( 1 \right) =  - 100 < 0\)

Do đó, phương trình \(f\left( x \right) = 0\) có nghiệm trong khoảng (- 3; 1)


Bài 15 trang 172 Sách bài tập (SBT) Đại số và giải tích 11

Giả sử hai hàm số \(y = f\left( x \right)\) và \(y = f\left( {x + {1 \over 2}} \right)\) đều liên tục trên đoạn [0; 1] và \(f\left( 0 \right) = f\left( 1 \right)\) Chứng minh rằng phương trình \(f\left( x \right) - f\left( {x + {1 \over 2}} \right) = 0\) luôn có nghiệm trong đoạn \(\left[ {0;{1 \over 2}} \right]\)

Giải :

Xét hàm số \(g\left( x \right) = f\left( x \right) - f\left( {x + {1 \over 2}} \right)\)

Ta có

\(\eqalign{
& g\left( 0 \right) = f\left( 0 \right) - f\left( {0 + {1 \over 2}} \right) \cr
& = f\left( 0 \right) - f\left( {{1 \over 2}} \right) \cr
& g\left( {{1 \over 2}} \right) = f\left( {{1 \over 2}} \right) - f\left( {{1 \over 2} + {1 \over 2}} \right) \cr
& = f\left( {{1 \over 2}} \right) - f\left( 1 \right) \cr
& = f\left( {{1 \over 2}} \right) - f\left( 0 \right) \cr} \)

(vì theo giả thiết \(f\left( 0 \right) = f\left( 1 \right)\)).

Do đó,

\(\eqalign{
& g\left( 0 \right)g\left( {{1 \over 2}} \right) = \left[ {f\left( 0 \right) - f\left( {{1 \over 2}} \right)} \right]\left[ {f\left( {{1 \over 2}} \right) - f\left( 0 \right)} \right] \cr
& = - {\left[ {f\left( 0 \right) - f\left( {{1 \over 2}} \right)} \right]^2} \le 0. \cr}\)

-          Nếu \(g\left( 0 \right)g\left( {{1 \over 2}} \right) = 0\) thì x = 0 hay \(x = {1 \over 2}\) là nghiệm của phương trình \(g\left( x \right) = 0\)

-          Nếu \(g\left( 0 \right)g\left( {{1 \over 2}} \right) < 0\)   (1)

Vì \(y = f\left( x \right)\) và \(y = f\left( {x + {1 \over 2}} \right)\) đều liên tục trên đoạn [0; 1] nên hàm số \(y = g\left( x \right)\) cũng liên tục trên [0; 1] và do đó nó liên tục trên \(\left[ {0;{1 \over 2}} \right]\)    (2)

Từ (1) và (2) suy ra phương trình \(g\left( x \right) = 0\) có ít nhất một nghiệm trong khoảng

Kết luận : Phương trình \(g\left( x \right) = 0\) hay \(f\left( x \right) - f\left( {x + {1 \over 2}} \right) = 0\) luôn có nghiệm trong đoạn \(\left( {0;{1 \over 2}} \right)\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác