Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4 trên 20 phiếu

Giải bài tập Toán 11

CHƯƠNG III. VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN

Giải bài tập trang 91, 92 bài 1 vector trong không gian Sách giáo khoa (SGK) Hình học 11. Câu 1: Cho hình lăng trụ tứ giác...

Bài 1 trang 91 sgk Hình học 11

Cho hình lăng trụ tứ giác: \(ABCD.A'B'C'D'\). Mặt phẳng \((P)\) cắt các cạnh bên \(AA', BB', CC', DD'\) lần lượt tại \(I, K, L, M\). xét các véctơ có các điểm đầu là các điểm \(I, K, L, M\) và có các điểm cuối là các đỉnh của hình lăng trụ. hãy chỉ ra các véctơ:

 a) Các véctơ cùng phương với \(\overrightarrow{IA}\);

b) Các véctơ cùng hướng với \(\overrightarrow{IA}\);

c) Các véctơ ngược hướng với \(\overrightarrow{IA}\).

Giải.

 a) Các véctơ cùng phương với \(\overrightarrow{IA}\) là: \(\overrightarrow{IA'}\), \(\overrightarrow{KB}\), \(\overrightarrow{KB'}\), \(\overrightarrow{LC}\), \(\overrightarrow{LC'}\), \(\overrightarrow{MD}\), \(\overrightarrow{MD'}\).

 b) Các véctơ cùng hướng với \(\overrightarrow{IA}\) là: \(\overrightarrow{KB}\), \(\overrightarrow{LC}\), \(\overrightarrow{MD}\).

 c) Các véctơ ngược hướng với \(\overrightarrow{IA}\) là: \(\overrightarrow{IA'}\), \(\overrightarrow{KB'}\), \(\overrightarrow{LC'}\), \(\overrightarrow{MD'}\).

 


Bài 2 trang 91 sgk hình học 11

Cho hình hộp \(ABCD.A'B'C'D'\). Chứng minh rằng:

a) \(\overrightarrow{AB}\) + \(\overrightarrow{B'C'}\) + \(\overrightarrow{DD'}\) = \(\overrightarrow{AC'}\);

b)  \(\overrightarrow{BD}\) - \(\overrightarrow{D'D}\) - \(\overrightarrow{B'D'}\) = \(\overrightarrow{BB'}\);

c)  \(\overrightarrow{AC}\) + \(\overrightarrow{BA'}\) + \(\overrightarrow{DB}\) + \(\overrightarrow{C'D}\) = \(\overrightarrow{0}\).

Giải

a) \(\overrightarrow{AB}\) + \(\overrightarrow{B'C'}\) + \(\overrightarrow{DD'}\)  = \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\) + \(\overrightarrow{CC'}\) = \(\overrightarrow{AC'}\); 

b) \(\overrightarrow{BD}\) - \(\overrightarrow{D'D}\) - \(\overrightarrow{B'D'}\) = \(\overrightarrow{BD}\) + \(\overrightarrow{DD'}\) + \(\overrightarrow{D'B'}\) = \(\overrightarrow{BB'}\);

c) \(\overrightarrow{AC}\) + \(\overrightarrow{BA'}\) + \(\overrightarrow{DB}\) + \(\overrightarrow{C'D}\) = \(\overrightarrow{AC}\) + \(\overrightarrow{CD'}\) + \(\overrightarrow{D'B'}\) + \(\overrightarrow{B'A}\) = \(\overrightarrow{0}\).

 


Bài 3 trang 91 sgk hình học 11

 Cho hình bình hành \(ABCD\). Gọi \(S\) là một điểm nằm ngoài mặt phẳng chứa hình bình hành. chứng minh rằng: \(\overrightarrow{SA}\) + \(\overrightarrow{SC}\) = \(\overrightarrow{SB}\) + \(\overrightarrow{SD}\).

Giải

Gọi \(O\) là tâm của hình bình hành \(ABCD\). Khi đó: 

\(\left.\begin{matrix}\overrightarrow{SA} +\overrightarrow{SC}= 2\overrightarrow{SO}\\ \overrightarrow{SB}+\overrightarrow{SD}=2\overrightarrow{SO} \end{matrix}\right\}\Leftrightarrow \overrightarrow{SA}+\overrightarrow{SC}=\overrightarrow{SB}+\overrightarrow{SD}.\)

 


Bài 4 trang 92 sgk hình học 11

Cho hình tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(CD\). Chứng minh rằng: 

a) \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right );\)

b) \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right ).\)

Giải

(Hình 33) 

a) \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{DN}.\)

    \(\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}.\) 

Cộng từng vế ta được: \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right )\)

b) 

\(\eqalign{
& \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AC} + \overrightarrow {CN} \cr
& \overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BD} + \overrightarrow {DN} \cr} \)

Cộng từng vế ta được: \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right ).\)

 


Bài 5 trang 92 sgk hình học 11

Cho hình tứ diện \(ABCD\). Hãy xác định hai điểm \(E, F\) sao cho:

a) \(\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD};\)

b) \(\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AD}.\)

Giải

(H.3.4)

a) \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AG}\) với \(G\) là đỉnh của hình bình hành \(ABGC\). Ta có: 

\(\overrightarrow{AG}+\overrightarrow{AD}=\overrightarrow{AE}\Rightarrow\) \(E\) là đỉnh của hình bình hành \(ADEG\).

b) Ta có \(\overrightarrow{AG}-\overrightarrow{AD}=\overrightarrow{AF}\Rightarrow\) \(F\) là đỉnh của hình bình hành \(ADGF\).

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác