Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.5 trên 11 phiếu

Giải bài tập Toán 11

CHƯƠNG III. VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN

Giải bài tập trang 97, 98 bài 2 hai đường thẳng vuông góc Sách giáo khoa (SGK) Hình học 11. Câu 1: Cho hình lập phương...

Bài 1 trang 97 sgk hình học 11

 Cho hình lập phương \(ABCD.EFGH\). Hãy xác định góc giữa các cặp vectơ sau đây:

a) \(\overrightarrow{AB}\) và \(\overrightarrow{EG};\)                 

 b) \(\overrightarrow{AF}\) và \(\overrightarrow{EG};\)                   

c) \(\overrightarrow{EG}\) và  \(\overrightarrow{DH}.\)

Giải

a) \((\widehat{\overrightarrow{AB}, \overrightarrow{EG}})\) \(=(\widehat{\overrightarrow{AB}, \overrightarrow{AC}})\)\(=45^{0};\)

b) \(\widehat{(\overrightarrow{AF}, \overrightarrow{EG})}\)\(=\widehat{(\overrightarrow{DG}, \overrightarrow{EG})}\)  \(= 60^{0};\)  (Vì tam giác \(DGE\) là tam giác đều)

c) \((\widehat{\overrightarrow{AB}, \overrightarrow{DH}})\) \(= 90^{0}.\) (Vì \(DH\bot (ABCD))\)

 


Bài 2 trang 97 sgk hình học 11

Cho hình tứ diện \(ABCD\). 

a) Chứng minh rằng: \(\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0.\)

b) Từ đẳng thức trên hãy suy ra rằng nếu tứ diện \(ABCD\) có \(AB ⊥ CD\) và \(AC ⊥ DB\) thì \(AD ⊥ BC\). 

Giải

a) \(\overrightarrow{AB}.\overrightarrow{CD}=\overrightarrow{AB}.(\overrightarrow{AD}-\overrightarrow{AC})\)

    \(\overrightarrow{AC}.\overrightarrow{DB}=\overrightarrow{AC}.(\overrightarrow{AB}-\overrightarrow{AD})\)

    \(\overrightarrow{AD}.\overrightarrow{BC}=\overrightarrow{AD}.(\overrightarrow{AC}-\overrightarrow{AB}).\)

Cộng từng vế ba đẳng thức trên ta được đẳng thức phải chứng minh.

b) \(AB ⊥ CD \Rightarrow \overrightarrow{AB}.\overrightarrow{CD}=0,\)

    \(AC ⊥ DB \Rightarrow \overrightarrow{AC}.\overrightarrow{DB}=0\)

Từ đẳng thức câu a ta có:

\(\Rightarrow\overrightarrow{AD}.\overrightarrow{BC}=0\Rightarrow AD ⊥ BC\).

 


Bài 3 trang 97 sgk hình học 11

a) Trong không gian nếu có hai đường thẳng \(a\) và \(b\) cùng vuông góc với đường thẳng \(c\) thì \(a\) và \(b\) có song song với nhau không?

     b) Trong không gian nếu đường thẳng \(a\) vuông góc với đường thẳng \(b\) và đường thẳng \(b\) vuông góc với đường thẳng \(c\) thì \(a\) có vuông góc với \(c\) không?

Giải

a) \(a\) và \(b\) chưa chắc song song.

b) \(a\) và \(c\) chưa chắc vuông góc.

 


Bài 4 trang 98 sgk hình học 11

Trong không gian cho hai tam giác đều \(ABC\) và \(ABC'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau. Gọi \(M, N, P, Q\) lần lượt là trung điểm của các cạnh \(AC, CB, B'C, C'A,\) Chứng minh rắng:

a) \(AB ⊥ CC'\);

b) Tứ giác \(MNPQ\) là hình chữ nhật.

Giải

(h.3.18)

a) \(\overrightarrow{AB}.\overrightarrow{CC'}=\overrightarrow{AB}.(\overrightarrow{AC'}-\overrightarrow{AC})=\overrightarrow{AB}.\overrightarrow{AC'}-\overrightarrow{AB}.\overrightarrow{AC})\)

\(=AB.AC'.\cos60^0-AB.AC.\cos60^0=0\)

 \(\Rightarrow AB ⊥ CC'\).

b) Theo giả thiết \(Q,P\) là trung điểm của \(AC',BC'\) do đó \(QP\) là đường trung bình của tam giác \(ABC'\)

Suy ra: \(QP//AB,QP={1\over 2}AB\)               (1)

Chứng minh tương tự ta có:

\(PN//CC',PN={1\over 2}CC'\)

\(MN//AB,MN={1\over 2}AB\)                         (2)

Từ (1) và (2) suy ra: \(MN//QP,MN=QP\). Do đó \(MNPQ\) là hình bình hành.

Ta có: \(MN//AB\), \(PN//CC'\) mà \(AB\bot CC'\) do đó \(MN\bot NP\)

Hình bình hành \(MNPQ\) có một góc vuông nên \(MNPQ\) là hình chữ nhật.

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác