Bài 1 trang 97 sgk hình học 11
Cho hình lập phương \(ABCD.EFGH\). Hãy xác định góc giữa các cặp vectơ sau đây:
a) \(\overrightarrow{AB}\) và \(\overrightarrow{EG};\)
b) \(\overrightarrow{AF}\) và \(\overrightarrow{EG};\)
c) \(\overrightarrow{EG}\) và \(\overrightarrow{DH}.\)
Giải
a) \((\widehat{\overrightarrow{AB}, \overrightarrow{EG}})\) \(=(\widehat{\overrightarrow{AB}, \overrightarrow{AC}})\)\(=45^{0};\)
b) \(\widehat{(\overrightarrow{AF}, \overrightarrow{EG})}\)\(=\widehat{(\overrightarrow{DG}, \overrightarrow{EG})}\) \(= 60^{0};\) (Vì tam giác \(DGE\) là tam giác đều)
c) \((\widehat{\overrightarrow{AB}, \overrightarrow{DH}})\) \(= 90^{0}.\) (Vì \(DH\bot (ABCD))\)
Bài 2 trang 97 sgk hình học 11
Cho hình tứ diện \(ABCD\).
a) Chứng minh rằng: \(\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0.\)
b) Từ đẳng thức trên hãy suy ra rằng nếu tứ diện \(ABCD\) có \(AB ⊥ CD\) và \(AC ⊥ DB\) thì \(AD ⊥ BC\).
Giải
a) \(\overrightarrow{AB}.\overrightarrow{CD}=\overrightarrow{AB}.(\overrightarrow{AD}-\overrightarrow{AC})\)
\(\overrightarrow{AC}.\overrightarrow{DB}=\overrightarrow{AC}.(\overrightarrow{AB}-\overrightarrow{AD})\)
\(\overrightarrow{AD}.\overrightarrow{BC}=\overrightarrow{AD}.(\overrightarrow{AC}-\overrightarrow{AB}).\)
Cộng từng vế ba đẳng thức trên ta được đẳng thức phải chứng minh.
b) \(AB ⊥ CD \Rightarrow \overrightarrow{AB}.\overrightarrow{CD}=0,\)
\(AC ⊥ DB \Rightarrow \overrightarrow{AC}.\overrightarrow{DB}=0\)
Từ đẳng thức câu a ta có:
\(\Rightarrow\overrightarrow{AD}.\overrightarrow{BC}=0\Rightarrow AD ⊥ BC\).
Bài 3 trang 97 sgk hình học 11
a) Trong không gian nếu có hai đường thẳng \(a\) và \(b\) cùng vuông góc với đường thẳng \(c\) thì \(a\) và \(b\) có song song với nhau không?
b) Trong không gian nếu đường thẳng \(a\) vuông góc với đường thẳng \(b\) và đường thẳng \(b\) vuông góc với đường thẳng \(c\) thì \(a\) có vuông góc với \(c\) không?
Giải
a) \(a\) và \(b\) chưa chắc song song.
b) \(a\) và \(c\) chưa chắc vuông góc.
Bài 4 trang 98 sgk hình học 11
Trong không gian cho hai tam giác đều \(ABC\) và \(ABC'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau. Gọi \(M, N, P, Q\) lần lượt là trung điểm của các cạnh \(AC, CB, B'C, C'A,\) Chứng minh rắng:
a) \(AB ⊥ CC'\);
b) Tứ giác \(MNPQ\) là hình chữ nhật.
Giải
(h.3.18)
a) \(\overrightarrow{AB}.\overrightarrow{CC'}=\overrightarrow{AB}.(\overrightarrow{AC'}-\overrightarrow{AC})=\overrightarrow{AB}.\overrightarrow{AC'}-\overrightarrow{AB}.\overrightarrow{AC})\)
\(=AB.AC'.\cos60^0-AB.AC.\cos60^0=0\)
\(\Rightarrow AB ⊥ CC'\).
b) Theo giả thiết \(Q,P\) là trung điểm của \(AC',BC'\) do đó \(QP\) là đường trung bình của tam giác \(ABC'\)
Suy ra: \(QP//AB,QP={1\over 2}AB\) (1)
Chứng minh tương tự ta có:
\(PN//CC',PN={1\over 2}CC'\)
\(MN//AB,MN={1\over 2}AB\) (2)
Từ (1) và (2) suy ra: \(MN//QP,MN=QP\). Do đó \(MNPQ\) là hình bình hành.
Ta có: \(MN//AB\), \(PN//CC'\) mà \(AB\bot CC'\) do đó \(MN\bot NP\)
Hình bình hành \(MNPQ\) có một góc vuông nên \(MNPQ\) là hình chữ nhật.
Giaibaitap.me
Giải bài tập trang 98 bài 2 hai đường thẳng vuông góc Sách giáo khoa (SGK) Hình học 11. Câu 5: Cho hình chóp tam giác...
Giải bài tập trang 104 bài 3 đường thẳng vuông góc với mặt phẳng Sách giáo khoa (SGK) Hình học 11. Câu 1: Chứng minh rằng...
Giải bài tập trang 105 bài 3 đường thẳng vuông góc với mặt phẳng Sách giáo khoa (SGK) Hình học 11. Câu 5: Chứng minh rằng...
Giải bài tập trang 113, 114 bài 4 hai mặt phẳng vuông góc Sách giáo khoa (SGK) Hình học 11. Câu 1: Cho ba mặt phẳng ...